Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors

被引:397
作者
Teoh, Wey Yang [2 ]
Scott, Jason A. [1 ]
Amal, Rose [1 ]
机构
[1] Univ New S Wales UNSW, Sch Chem Engn, ARC Ctr Excellence Funct Nanomat, Sydney, NSW, Australia
[2] City Univ Hong Kong, Sch Energy & Environm, Clean Energy & Nanotechnol CLEAN Lab, Hong Kong, Hong Kong, Peoples R China
关键词
TITANIUM-DIOXIDE; TIO2; PHOTOCATALYSTS; GAS-PHASE; Z-SCHEME; HYDROGEN-PRODUCTION; HYDROXYL RADICALS; ORGANIC-COMPOUNDS; BAND-GAP; WATER; SEMICONDUCTOR;
D O I
10.1021/jz3000646
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The field of heterogeneous photocatalysis has expanded rapidly in the last four decades, having undergone various evolutionary phases related to energy and the environment. The two most significant applications of photocatalysis are geared toward solar water splitting and the purification of air and water. Notably, the interdisciplinary nature of the field has increased significantly, incorporating semiconductor physics, surface sciences, photo and physical chemistry, materials science, and chemical engineering. Whereas this forms the basis on which the field continues to grow, adequate bridging of multidisciplinary knowledge remains essential. By recalling some of the classical fundamentals of photocatalysis, this Perspective provides contemporary views on heterogeneous photochemical conversion, encompassing charge transport characteristics, radical chemistry and organic degradation mechanisms, photocatalyst design, and photoreactor engineering.
引用
收藏
页码:629 / 639
页数:11
相关论文
共 115 条
[1]   Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide [J].
Abe, Ryu ;
Takami, Hiticishi ;
Murakami, Naoya ;
Ohtani, Bunsho .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7780-+
[2]   The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J].
Anpo, M ;
Takeuchi, M .
JOURNAL OF CATALYSIS, 2003, 216 (1-2) :505-516
[3]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[4]   Review of Major Design and Scale-up Considerations for Solar Photocatalytic Reactors [J].
Braham, Rowan J. ;
Harris, Andrew T. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (19) :8890-8905
[5]   Photoinduced reactivity of titanium dioxide [J].
Carp, O ;
Huisman, CL ;
Reller, A .
PROGRESS IN SOLID STATE CHEMISTRY, 2004, 32 (1-2) :33-177
[6]   Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:: Nanostructure-directing effect of Si-doping [J].
Cesar, I ;
Kay, A ;
Martinez, JAG ;
Grätzel, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (14) :4582-4583
[7]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[8]   Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles [J].
Cherepy, NJ ;
Liston, DB ;
Lovejoy, JA ;
Deng, HM ;
Zhang, JZ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (05) :770-776
[9]   Shape Effect and Shape Control of Polycrystalline Semiconductor Electrodes for Use in Photoelectrochemical Cells [J].
Choi, Kyoung-Shin .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (15) :2244-2250
[10]   EFFECTS OF METAL-ION DOPANTS ON THE PHOTOCATALYTIC REACTIVITY OF QUANTUM-SIZED TIO2 PARTICLES [J].
CHOI, WY ;
TERMIN, A ;
HOFFMANN, MR .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1994, 33 (10) :1091-1092