Multichannel phase-sensitive amplification in a low-loss CMOS-compatible spiral waveguide

被引:4
|
作者
Zhang, Yanbing [1 ]
Reimer, Christian [1 ]
Wu, Jenny [1 ]
Roztocki, Piotr [1 ]
Wetzel, Benjamin [1 ,2 ]
Little, Brent E. [3 ]
Chu, Sai T. [4 ]
Moss, David J. [5 ]
Eggleton, Benjamin J. [6 ]
Kues, Michael [1 ,7 ]
Morandotti, Roberto [1 ,8 ,9 ]
机构
[1] INRS EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[2] Univ Sussex, Sch Math & Phys Sci, Brighton BN1 9QH, E Sussex, England
[3] Chinese Acad Sci, State Key Lab Transient Opt & Photon, Xian, Shaanxi, Peoples R China
[4] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China
[5] Swinburne Univ Technol, Ctr Microphoton, Hawthorn, VC 3122, Australia
[6] Univ Sydney, Sch Phys, IPOS, CUDOS, Sydney, NSW 2006, Australia
[7] Univ Glasgow, Sch Engn, Rankine Bldg,Oakfield Ave, Glasgow G12 8LT, Lanark, Scotland
[8] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[9] Natl Res Univ Informat Technol Mech & Opt, St Petersburg, Russia
基金
加拿大自然科学与工程研究理事会; 欧盟地平线“2020”; 澳大利亚研究理事会;
关键词
REGENERATION; SIGNALS; AMPLIFIER; LIGHT; FIBER;
D O I
10.1364/OL.42.004391
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate single-channel and multichannel phase-sensitive amplification (PSA) in a highly nonlinear, CMOS-compatible spiral waveguide with ultralow linear and negligible nonlinear losses. We achieve a net gain of 10.4 dB and an extinction ratio of 24.6 dB for single-channel operation, as well as a 5 dB gain and a 15 dB extinction ratio spanning over a bandwidth of 24 nm for multiple-channel operation. In addition, we derive a simple analytic solution that enables calculating the maximum phase-sensitive gain in any Kerr medium featuring linear and nonlinear losses. These results not only give a clear guideline for designing PSA-based amplifiers but also show that it is possible to implement both optical regeneration and amplification in a single on-chip device. (C) 2017 Optical Society of America
引用
收藏
页码:4391 / 4394
页数:4
相关论文
共 50 条
  • [21] Reduction of phase noise to amplitude noise conversion in silicon waveguide-based phase-sensitive amplification
    Ma, Yonghua
    Liu, Hongjun
    Sun, Qibing
    Huang, Nan
    Wang, Zhaolu
    APPLIED OPTICS, 2016, 55 (12) : 3140 - 3144
  • [22] A 300mm CMOS-compatible PECVD silicon nitride platform for integrated photonics with low loss and low process induced phase variation
    Saseendran, Sandeep S.
    Kongnyuy, Tangla D.
    Figeys, Bruno
    Buja, Federico
    Troia, Benedetto
    Kerman, Sarp
    Marinins, Aleksandrs
    Jansen, Roelof
    Rottenberg, Xavier
    Tezcan, Deniz S.
    Soussan, Philippe
    2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [23] Low-loss channel waveguide on high-energy-beam sensitive glass
    Srisanit, N
    Wang, MR
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (05) : 703 - 705
  • [24] Analysis of Phase-Sensitive Amplification in Phase-Shifted Periodically-Poled Waveguide for Discrimination and Amplification of Optical Vector Modulation Signal
    Sakakibara, Shigenobu
    Murata, Hiroshi
    Sanada, Atsushi
    2017 22ND MICROOPTICS CONFERENCE (MOC), 2017, : 280 - 281
  • [25] All-optical simultaneous multichannel quadrature phase shift keying signal regeneration based on phase-sensitive amplification
    Wang, Hongxiang
    Wang, Qi
    Bai, Lin
    Ji, Yuefeng
    OPTICAL ENGINEERING, 2018, 57 (01)
  • [26] Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications
    Hoffman, Luis
    Subramanian, Ananth
    Helin, Philippe
    Du Bois, Bert
    Baets, Roel
    Van Dorpe, Pol
    Gielen, Georges
    Puers, Robert
    Braeken, Dries
    IEEE PHOTONICS JOURNAL, 2016, 8 (05):
  • [27] Phase-sensitive amplification of light in a χ(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide
    Neo, Richard
    Schroeder, Jochen
    Paquot, Yvan
    Choi, Duk-Yong
    Madden, Steve
    Luther-Davies, Barry
    Eggleton, Benjamin J.
    OPTICS EXPRESS, 2013, 21 (07): : 7926 - 7933
  • [28] Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides
    Hu, Juejun
    Tarasov, Vladimir
    Carlie, Nathan
    Feng, Ning-Ning
    Petit, Laeticia
    Agarwal, Anu
    Richardson, Kathleen
    Kimerling, Lionel
    OPTICS EXPRESS, 2007, 15 (19): : 11798 - 11807
  • [29] Phase-sensitive amplification of a QPSK signal using a dispersion engineered silicon-graphene oxide hybrid waveguide
    Chen, Zhihua
    Liu, Hongjun
    Wang, Zhaolu
    Huang, Nan
    APPLIED OPTICS, 2020, 59 (07) : 1801 - 1807
  • [30] Amplitude-Phase Regeneration of 8PSK Signals Based on Phase-Sensitive Amplification by Silicon Graphene Oxide Waveguide
    Hui, Rui
    Li, Xuefeng
    Du, Wenze
    LASER & OPTOELECTRONICS PROGRESS, 2024, 16 (17)