Hyper Dual Quaternions representation of rigid bodies kinematics

被引:22
作者
Cohen, Avraham [1 ]
Shoham, Moshe [1 ]
机构
[1] Technion Israel Inst Technol, Dept Mech Engn, Robot Lab, IL-32000 Haifa, Israel
关键词
Dual-quaternion; Hyper-dual numbers; Hyper dual-quaternion; Rigid body kinematics; TRANSLATION; ATTITUDE;
D O I
10.1016/j.mechmachtheory.2020.103861
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hyper-Dual Quaternions, HDQ, are first introduced in this paper. Utilizing the Hyper-Dual Numbers, HDN, Dual Quaternions, DQ, and hyper-dual angle, the general expression of HDQ is obtained. Rigid single- and multi-body kinematics such as in a serial robot kinematics, are then expressed in HDQ form. Taking advantage of the dual numbers' "automatic differentiation" feature, HDQ encompasses both body pose (translational and rotational) and body velocities in a compact form with no need for further pose differentiation. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Dual Quaternion Modeling and Control of a Quad-rotor Aerial Manipulator [J].
Abaunza, H. ;
Castillo, P. ;
Victorino, A. ;
Lozano, R. .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2017, 88 (2-4) :267-283
[2]  
Abaunza H., 2015, RES ED DEV UNMANN AE, DOI [10.1109/RED-UAS.2015.7441007, DOI 10.1109/RED-UAS.2015.7441007]
[3]  
[Anonymous], P 18 WORLD C INT FED
[4]  
[Anonymous], P IEEE INT C ROB AUT
[5]  
Artale V., 1702, P AIP C, DOI [10.1063/1.49389652016, DOI 10.1063/1.49389652016]
[6]  
Bangura M., 2014, P AUSTR C ROB AUT ME
[7]  
Chang C, 1998, P ASME DES ENG TECHN
[8]  
Clifford W.K., 1873, P LONDON MATH SOC, V4, DOI [10.1112/plms/s1-4.1.381, DOI 10.1112/PLMS/S1-4.1.381]
[9]   Principle of transference - An extension to hyper-dual numbers [J].
Cohen, Avraham ;
Shoham, Moshe .
MECHANISM AND MACHINE THEORY, 2018, 125 :101-110
[10]   Application of hyper-dual numbers to rigid bodies equations of motion [J].
Cohen, Avraham ;
Shoham, Moshe .
MECHANISM AND MACHINE THEORY, 2017, 111 :76-84