Global properties of the triangular systems in the singular case

被引:26
作者
Korobov, V. I. [2 ,3 ]
Pavlichkov, S. S. [1 ]
机构
[1] Kharkov Natl Univ, Dept Math Anal, UA-61077 Kharkov, Ukraine
[2] Kharkov Natl Univ, Dept Differential Equat & Control, UA-61077 Kharkov, Ukraine
[3] Univ Szczecin, Inst Math, PL-70451 Szczecin, Poland
关键词
nonlinear robust control; triangular form; global controllability; feedback linearization;
D O I
10.1016/j.jmaa.2007.12.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of the triangular (multi-input and multi-output) control systems, of O.D.E., which are not feedback linearizable, and investigate its global behavior. The triangular form introduced is a generalization of the classes of triangular systems, considered before. For our class, we solve the problem of global robust controllability. Combining our main result with that of [F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag, A.I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control 42 (1997) 1394-1407], we obtain a corollary on the global discontinuous sampled stabilization (an example showing that global smooth stabilization can be irrelevant to the singular case is considered). To prove our main result, we apply a certain "back-stepping" algorithm and combine the technique proposed in [VI. Korobov, S.S. Pavlichkov, W.H. Schmidt, Global robust controllability of the triangular integro-differential Volterra systems, J. Math. Anal. Appl. 309 (2005) 743-760] with solving a specific problem of global "practical stabilization" by means of a discontinuous, time-varying feedback law. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1426 / 1439
页数:14
相关论文
共 37 条
[11]  
Gardner R. B., 1991, Differential Geometry and its Applications, V1, P153, DOI 10.1016/0926-2245(91)90028-8
[12]   Adaptive backstepping control of a class of chaotic systems [J].
Ge, SS ;
Wang, C ;
Lee, TH .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (05) :1149-1156
[13]   Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems [J].
Ge, SS ;
Wang, J .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (06) :1409-1419
[14]   Adaptive control of uncertain Chua's circuits [J].
Ge, SS ;
Wang, C .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (09) :1397-1402
[15]   GLOBAL TRANSFORMATIONS OF NON-LINEAR SYSTEMS [J].
HUNT, LR ;
SU, R ;
MEYER, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (01) :24-31
[16]  
Jakubczyk B, 1980, Bull. Acad. Polon. Sci., V28, P517, DOI 10.12691/ajme-5-6-13
[17]   A POSITIVE REAL CONDITION FOR GLOBAL STABILIZATION OF NONLINEAR-SYSTEMS [J].
KOKOTOVIC, PV ;
SUSSMANN, HJ .
SYSTEMS & CONTROL LETTERS, 1989, 13 (02) :125-133
[18]  
Kolmogorov AN., 1957, ELEMENTS THEORY FUNC
[19]   Global robust controllability of the triangular integro-differential Volterra systems [J].
Korobov, VI ;
Pavlichkov, SS ;
Schmidt, WH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (02) :743-760
[20]  
Korobov VI, 2001, OPTIMIZATION, V50, P155