Global properties of the triangular systems in the singular case

被引:26
作者
Korobov, V. I. [2 ,3 ]
Pavlichkov, S. S. [1 ]
机构
[1] Kharkov Natl Univ, Dept Math Anal, UA-61077 Kharkov, Ukraine
[2] Kharkov Natl Univ, Dept Differential Equat & Control, UA-61077 Kharkov, Ukraine
[3] Univ Szczecin, Inst Math, PL-70451 Szczecin, Poland
关键词
nonlinear robust control; triangular form; global controllability; feedback linearization;
D O I
10.1016/j.jmaa.2007.12.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of the triangular (multi-input and multi-output) control systems, of O.D.E., which are not feedback linearizable, and investigate its global behavior. The triangular form introduced is a generalization of the classes of triangular systems, considered before. For our class, we solve the problem of global robust controllability. Combining our main result with that of [F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag, A.I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control 42 (1997) 1394-1407], we obtain a corollary on the global discontinuous sampled stabilization (an example showing that global smooth stabilization can be irrelevant to the singular case is considered). To prove our main result, we apply a certain "back-stepping" algorithm and combine the technique proposed in [VI. Korobov, S.S. Pavlichkov, W.H. Schmidt, Global robust controllability of the triangular integro-differential Volterra systems, J. Math. Anal. Appl. 309 (2005) 743-760] with solving a specific problem of global "practical stabilization" by means of a discontinuous, time-varying feedback law. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1426 / 1439
页数:14
相关论文
共 37 条
  • [11] Gardner R. B., 1991, Differential Geometry and its Applications, V1, P153, DOI 10.1016/0926-2245(91)90028-8
  • [12] Adaptive backstepping control of a class of chaotic systems
    Ge, SS
    Wang, C
    Lee, TH
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (05): : 1149 - 1156
  • [13] Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems
    Ge, SS
    Wang, J
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (06): : 1409 - 1419
  • [14] Adaptive control of uncertain Chua's circuits
    Ge, SS
    Wang, C
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (09): : 1397 - 1402
  • [15] GLOBAL TRANSFORMATIONS OF NON-LINEAR SYSTEMS
    HUNT, LR
    SU, R
    MEYER, G
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (01) : 24 - 31
  • [16] Jakubczyk B, 1980, Bull. Acad. Polon. Sci., V28, P517, DOI 10.12691/ajme-5-6-13
  • [17] A POSITIVE REAL CONDITION FOR GLOBAL STABILIZATION OF NONLINEAR-SYSTEMS
    KOKOTOVIC, PV
    SUSSMANN, HJ
    [J]. SYSTEMS & CONTROL LETTERS, 1989, 13 (02) : 125 - 133
  • [18] Kolmogorov AN., 1957, ELEMENTS THEORY FUNC
  • [19] Global robust controllability of the triangular integro-differential Volterra systems
    Korobov, VI
    Pavlichkov, SS
    Schmidt, WH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (02) : 743 - 760
  • [20] Korobov VI, 2001, OPTIMIZATION, V50, P155