Global properties of the triangular systems in the singular case

被引:26
作者
Korobov, V. I. [2 ,3 ]
Pavlichkov, S. S. [1 ]
机构
[1] Kharkov Natl Univ, Dept Math Anal, UA-61077 Kharkov, Ukraine
[2] Kharkov Natl Univ, Dept Differential Equat & Control, UA-61077 Kharkov, Ukraine
[3] Univ Szczecin, Inst Math, PL-70451 Szczecin, Poland
关键词
nonlinear robust control; triangular form; global controllability; feedback linearization;
D O I
10.1016/j.jmaa.2007.12.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of the triangular (multi-input and multi-output) control systems, of O.D.E., which are not feedback linearizable, and investigate its global behavior. The triangular form introduced is a generalization of the classes of triangular systems, considered before. For our class, we solve the problem of global robust controllability. Combining our main result with that of [F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag, A.I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control 42 (1997) 1394-1407], we obtain a corollary on the global discontinuous sampled stabilization (an example showing that global smooth stabilization can be irrelevant to the singular case is considered). To prove our main result, we apply a certain "back-stepping" algorithm and combine the technique proposed in [VI. Korobov, S.S. Pavlichkov, W.H. Schmidt, Global robust controllability of the triangular integro-differential Volterra systems, J. Math. Anal. Appl. 309 (2005) 743-760] with solving a specific problem of global "practical stabilization" by means of a discontinuous, time-varying feedback law. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1426 / 1439
页数:14
相关论文
共 37 条
[1]  
[Anonymous], 1973, DIFF EQUAT+
[2]  
[Anonymous], ALGEBRAIC GEOMETRIC
[3]  
BORISOV VF, 1988, APPL MATH MECH, V52, P939
[4]  
Brunovsky P., 1970, Kybernetika, V6, P173
[5]   Constructive nonsmooth stabilization of triangular systems [J].
Celikovsky, S ;
Aranda-Bricaire, E .
SYSTEMS & CONTROL LETTERS, 1999, 36 (01) :21-37
[6]   Equivalence of nonlinear systems to triangular form: The singular case [J].
Celikovsky, S ;
Nijmeijer, H .
SYSTEMS & CONTROL LETTERS, 1996, 27 (03) :135-144
[7]   EXACT LINEARIZATION OF NONLINEAR-SYSTEMS WITH OUTPUTS [J].
CHENG, D ;
ISIDORI, A ;
RESPONDEK, W ;
TARN, TJ .
MATHEMATICAL SYSTEMS THEORY, 1988, 21 (02) :63-83
[8]   Asymptotic controllability implies feedback stabilization [J].
Clarke, FH ;
Ledyaev, YS ;
Sontag, ED ;
Subbotin, AI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1394-1407
[9]   ADDING AN INTEGRATOR FOR THE STABILIZATION PROBLEM [J].
CORON, JM ;
PRALY, L .
SYSTEMS & CONTROL LETTERS, 1991, 17 (02) :89-104
[10]   FLATNESS AND DEFECT OF NONLINEAR-SYSTEMS - INTRODUCTORY THEORY AND EXAMPLES [J].
FLIESS, M ;
LEVINE, J ;
MARTIN, P ;
ROUCHON, P .
INTERNATIONAL JOURNAL OF CONTROL, 1995, 61 (06) :1327-1361