Global properties of the triangular systems in the singular case

被引:26
作者
Korobov, V. I. [2 ,3 ]
Pavlichkov, S. S. [1 ]
机构
[1] Kharkov Natl Univ, Dept Math Anal, UA-61077 Kharkov, Ukraine
[2] Kharkov Natl Univ, Dept Differential Equat & Control, UA-61077 Kharkov, Ukraine
[3] Univ Szczecin, Inst Math, PL-70451 Szczecin, Poland
关键词
nonlinear robust control; triangular form; global controllability; feedback linearization;
D O I
10.1016/j.jmaa.2007.12.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of the triangular (multi-input and multi-output) control systems, of O.D.E., which are not feedback linearizable, and investigate its global behavior. The triangular form introduced is a generalization of the classes of triangular systems, considered before. For our class, we solve the problem of global robust controllability. Combining our main result with that of [F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag, A.I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control 42 (1997) 1394-1407], we obtain a corollary on the global discontinuous sampled stabilization (an example showing that global smooth stabilization can be irrelevant to the singular case is considered). To prove our main result, we apply a certain "back-stepping" algorithm and combine the technique proposed in [VI. Korobov, S.S. Pavlichkov, W.H. Schmidt, Global robust controllability of the triangular integro-differential Volterra systems, J. Math. Anal. Appl. 309 (2005) 743-760] with solving a specific problem of global "practical stabilization" by means of a discontinuous, time-varying feedback law. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1426 / 1439
页数:14
相关论文
共 37 条
  • [1] [Anonymous], 1973, DIFF EQUAT+
  • [2] [Anonymous], ALGEBRAIC GEOMETRIC
  • [3] BORISOV VF, 1988, APPL MATH MECH, V52, P939
  • [4] Brunovsky P., 1970, Kybernetika, V6, P173
  • [5] Constructive nonsmooth stabilization of triangular systems
    Celikovsky, S
    Aranda-Bricaire, E
    [J]. SYSTEMS & CONTROL LETTERS, 1999, 36 (01) : 21 - 37
  • [6] Equivalence of nonlinear systems to triangular form: The singular case
    Celikovsky, S
    Nijmeijer, H
    [J]. SYSTEMS & CONTROL LETTERS, 1996, 27 (03) : 135 - 144
  • [7] EXACT LINEARIZATION OF NONLINEAR-SYSTEMS WITH OUTPUTS
    CHENG, D
    ISIDORI, A
    RESPONDEK, W
    TARN, TJ
    [J]. MATHEMATICAL SYSTEMS THEORY, 1988, 21 (02): : 63 - 83
  • [8] Asymptotic controllability implies feedback stabilization
    Clarke, FH
    Ledyaev, YS
    Sontag, ED
    Subbotin, AI
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) : 1394 - 1407
  • [9] ADDING AN INTEGRATOR FOR THE STABILIZATION PROBLEM
    CORON, JM
    PRALY, L
    [J]. SYSTEMS & CONTROL LETTERS, 1991, 17 (02) : 89 - 104
  • [10] FLATNESS AND DEFECT OF NONLINEAR-SYSTEMS - INTRODUCTORY THEORY AND EXAMPLES
    FLIESS, M
    LEVINE, J
    MARTIN, P
    ROUCHON, P
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1995, 61 (06) : 1327 - 1361