Coarse-grained tight-binding models

被引:2
|
作者
Liu, Tian-Xiang [1 ]
Mao, Li [1 ]
Pistol, Mats-Erik [2 ]
Pryor, Craig [3 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[2] Lund Univ, NanoLund & Solid State Phys, POB 118, S-22100 Lund, Sweden
[3] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
coarse-grained; tight-binding models; semiconductors; REDUCED HAMILTONIAN METHOD; ELECTRONIC-STRUCTURE; DIAMOND; SEMICONDUCTORS;
D O I
10.1088/1361-648X/ac443f
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Calculating the electronic structure of systems involving very different length scales presents a challenge. Empirical atomistic descriptions such as pseudopotentials or tight-binding models allow one to calculate the effects of atomic placements, but the computational burden increases rapidly with the size of the system, limiting the ability to treat weakly bound extended electronic states. Here we propose a new method to connect atomistic and quasi-continuous models, thus speeding up tight-binding calculations for large systems. We divide a structure into blocks consisting of several unit cells which we diagonalize individually. We then construct a tight-binding Hamiltonian for the full structure using a truncated basis for the blocks, ignoring states having large energy eigenvalues and retaining states with energies close to the band edge energies. A numerical test using a GaAs/AlAs quantum well shows the computation time can be decreased to less than 5% of the full calculation with errors of less than 1%. We give data for the trade-offs between computing time and loss of accuracy. We also tested calculations of the density of states for a GaAs/AlAs quantum well and find a ten times speedup without much loss in accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Atomistic and Coarse-Grained Models for Biomolecular Simulations
    Head-Gordon, Teresa
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 44A - 44A
  • [22] Coarse-grained molecular models of the surface of hair
    Weiand, Erik
    Ewen, James P.
    Koenig, Peter H.
    Roiter, Yuri
    Page, Steven H.
    Angioletti-Uberti, Stefano
    Dini, Daniele
    SOFT MATTER, 2022, 18 (09) : 1779 - 1792
  • [23] Modeling Chromatin Condensation with Coarse-Grained Models
    Lebold, Kathryn M.
    Best, Robert B.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 214A - 214A
  • [24] Point multipole electrostatics for coarse-grained models
    Ichiye, Toshiko
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [25] Applications of Coarse-Grained Models in Metabolic Engineering
    Doan, Dieu Thi
    Hoang, Manh Dat
    Heins, Anna-Lena
    Kremling, Andreas
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [26] Folding and design in coarse-grained protein models
    Peterson, C
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 712 - 714
  • [27] Coarse-grained models and simulations of bilayer membranes
    Stevens, MJ
    Hoh, J
    Woolf, T
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 542A - 542A
  • [28] Development and Applications of Coarse-Grained Models for RNA
    Hyeon, Changbong
    Denesyuk, Natalia A.
    Thirumalai, D.
    ISRAEL JOURNAL OF CHEMISTRY, 2014, 54 (8-9) : 1358 - 1373
  • [29] Thermodynamics of coarse-grained models of supercooled liquids
    Chandler, D
    Garrahan, JP
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (04):
  • [30] Evidence of information limitations in coarse-grained models
    Khot, Aditi
    Shiring, Stephen B.
    Savoie, Brett M.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (24):