The g-Extra Edge-Connectivity of Balanced Hypercubes

被引:6
作者
Wei, Yulong [1 ]
Li, Rong-hua [2 ]
Yang, Weihua [1 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Balanced hypercube; g-extra edge-connectivity; reliability evaluation; RELIABILITY EVALUATION;
D O I
10.1142/S0219265921420081
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The g-extra edge-connectivity is an important measure for the reliability of interconnection networks. Recently, Yang et al. [Appl. Math. Comput. 320 (2018) 464-473] determined the 3-extra edge-connectivity of balanced hypercubes BHn and conjectured that the g-extra edge-connectivity of BHn is lambda(g)(BHn) = 2(g + 1)n - 4g + 4 for 2 <= g <= 2n - 1. In this paper, we confirm their conjecture for n >= 6 - 12 g+1 and 2 <= g <= 8, and disprove their conjecture for n >= 3e(g)(BHn)/g+1 and 9 <= g <= 2n - 1, where e(g)(BHn) = max{|E(BHn[U])vertical bar vertical bar U subset of V (BHn),vertical bar U vertical bar = g + 1}.
引用
收藏
页数:9
相关论文
共 19 条
[1]  
Bondy J.A., 2007, Graph Theory
[2]   ON COMPUTING A CONDITIONAL EDGE-CONNECTIVITY OF A GRAPH [J].
ESFAHANIAN, AH ;
HAKIMI, SL .
INFORMATION PROCESSING LETTERS, 1988, 27 (04) :195-199
[3]   On the extraconnectivity of graphs [J].
Fabrega, J ;
Fiol, MA .
DISCRETE MATHEMATICS, 1996, 155 (1-3) :49-57
[4]   On isoperimetric connectivity in vertex-transitive graphs [J].
Hamidoune, YO ;
Lladó, AS ;
Serra, O ;
Tindell, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (01) :139-144
[5]   Fault-tolerant strong Menger (edge) connectivity and 3-extra edge-connectivity of balanced hypercubes [J].
Li, Pingshan ;
Xu, Min .
THEORETICAL COMPUTER SCIENCE, 2018, 707 :56-68
[6]   On extra connectivity and extra edge-connectivity of balanced hypercubes [J].
Lue, Huazhong .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (04) :813-820
[7]   On the complexity of computing the k-restricted edge-connectivity of a graph [J].
Montejano, Luis Pedro ;
Sau, Ignasi .
THEORETICAL COMPUTER SCIENCE, 2017, 662 :31-39
[8]   On reliability of the folded hypercubes [J].
Qiang Zhu ;
Jun-Ming Xu ;
Xinmin Hou ;
Min Xu .
INFORMATION SCIENCES, 2007, 177 (08) :1782-1788
[9]  
Wang Ming, 2002, Journal of Shanghai Jiaotong University, V36, P858
[10]   The balanced hypercube: A cube-based system for fault-tolerant applications [J].
Wu, J ;
Huang, K .
IEEE TRANSACTIONS ON COMPUTERS, 1997, 46 (04) :484-490