Rotationally invariant viscoelastic medium with a non-symmetric stiffness matrix

被引:0
|
作者
Klimes, Ludek [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Geophys, Ke Karlovu 3, Prague 12116 2, Czech Republic
关键词
viscoelastic media; stiffness tensor; elastic moduli; transverse isotropy; symmetry axis; RELAXATION; SYMMETRY;
D O I
10.1007/s11200-021-1106-5
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The stiffness matrix of a viscoelastic medium is symmetric in the low-frequency and high-frequency limits, but not for finite frequencies. We thus consider a non-symmetric stiffness matrix in this paper. We determine the general form of a rotationally invariant non-symmetric stiffness matrix of a viscoelastic medium. It is described by three additional complex-valued parameters in comparison with a rotationally invariant symmetric stiffness matrix of a transversely isotropic (uniaxial) viscoelastic medium with a symmetric stiffness matrix. As a consequence, we find that the stiffness matrix of an isotropic viscoelastic medium is always symmetric.
引用
收藏
页码:38 / 47
页数:10
相关论文
共 50 条
  • [41] Non-symmetric Linnik distributions
    Erdogan, MB
    Ostrovskii, IV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (05): : 511 - 516
  • [42] ON NON-SYMMETRIC MODULAR SPACES
    HERDA, HH
    COLLOQUIUM MATHEMATICUM, 1967, 17 (02) : 333 - &
  • [43] Non-symmetric Linnik distributions
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 325 (05):
  • [44] Non-symmetric perturbations of symmetric Dirichlet forms
    Fitzsimmons, PJ
    Kuwae, K
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (01) : 140 - 162
  • [45] Convergence of non-symmetric forms
    Hino, M
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1998, 38 (02): : 329 - 341
  • [46] NON-SYMMETRIC STOLARSKY MEANS
    Butt, Saad Ihsan
    Pecaric, Josip
    Rehman, Atiq ur
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (02): : 227 - 237
  • [47] NON-SYMMETRIC RESISTANCE FORMS
    Boboc, Nicu
    Bucur, Gheorghe
    POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, 2009, : 65 - 84
  • [48] (Non-Symmetric) Yetter-Drinfel'd Module Category and Invariant Coinvariant Jacobians
    Wang, Zhongwei
    Wang, Yong
    SYMMETRY-BASEL, 2024, 16 (05):
  • [49] Non-symmetric lexicographic configurations
    Hering, Christoph
    Krebs, Andreas
    Edgar, Thomas
    GROUP THEORY, COMBINATORICS, AND COMPUTING, 2014, 611 : 49 - +
  • [50] Non-symmetric Kellogg nuclei
    Gantmakher, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1936, 10 : 3 - 5