Nonlinear elliptic inequalities with gradient terms on the Heisenberg group

被引:20
作者
Bordoni, Sara [1 ]
Filippucci, Roberta [1 ]
Pucci, Patrizia [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
Nonlinear elliptic inequalities on the Heisenberg group; Existence; Nonexistence; Uniqueness and qualitative properties of entire solutions; NONEXISTENCE; PRINCIPLES; THEOREMS; SYSTEMS;
D O I
10.1016/j.na.2015.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give sufficient conditions both for existence and for nonexistence of nontrivial nonnegative entire solutions of nonlinear elliptic inequalities with gradient terms on the Heisenberg group. The picture is completed with the presentation of a uniqueness result which is, as far as we know, the first attempt for general equations with gradient terms on the Heisenberg group. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:262 / 279
页数:18
相关论文
共 25 条
[1]  
[Anonymous], 1957, PACIFIC J MATH
[2]   Liouville type results and a maximum principle for non-linear differential operators on the Heisenberg group [J].
Brandolini, Luca ;
Magliaro, Marco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (02) :686-712
[3]   A note on Keller-Osserman conditions on Carnot groups [J].
Brandolini, Luca ;
Magliaro, Marco .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2326-2337
[4]   AN EMBEDDING THEOREM AND THE HARNACK INEQUALITY FOR NONLINEAR SUBELLIPTIC EQUATIONS [J].
CAPOGNA, L ;
DANIELLI, D ;
GAROFALO, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1765-1794
[5]   Liouville theorems for elliptic systems and applications [J].
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (01) :121-138
[6]   Comparison principles, uniqueness and symmetry results of solutions of quasilinear elliptic equations and inequalities [J].
D'Ambrosio, Lorenzo ;
Farina, Alberto ;
Mitidieri, Enzo ;
Serrin, James .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 90 :135-158
[7]  
D'Ambrosio L, 2012, ADV DIFFERENTIAL EQU, V17, P935
[8]   A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities [J].
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
ADVANCES IN MATHEMATICS, 2010, 224 (03) :967-1020
[9]   Non-existence of entire solutions of degenerate elliptic inequalities with weights [J].
Filippucci, Roberta ;
Pucci, Patrizia ;
Rigoli, Marco .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 188 (01) :155-179
[10]   NONLINEAR WEIGHTED p-LAPLACIAN ELLIPTIC INEQUALITIES WITH GRADIENT TERMS [J].
Filippucci, Roberta ;
Pucci, Patrizia ;
Rigoli, Marco .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (03) :501-535