Speckle Reduction in Matrix-Log Domain for Synthetic Aperture Radar Imaging

被引:9
作者
Deledalle, Charles-Alban [1 ]
Denis, Loic [2 ]
Tupin, Florence [3 ]
机构
[1] Univ Bordeaux, Bordeaux INP, CNRS, IMB, F-33405 Talence, France
[2] Univ Lyon, UJM St Etienne, CNRS, Inst Opt,Grad Sch,Lab Hubert Curien,UMR 5516, F-42023 St Etienne, France
[3] Telecom Paris, Inst Polytech Paris, LTCI, Palaiseau, France
关键词
Covariance matrix; Denoising; Synthetic aperture radar; Plug-in ADMM; Estimation; Regularization; SAR; REGULARIZATION; SIGNAL;
D O I
10.1007/s10851-022-01067-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Synthetic aperture radar (SAR) images are widely used for Earth observation to complement optical imaging. By combining information on the polarization and the phase shift of the radar echos, SAR images offer high sensitivity to the geometry and materials that compose a scene. This information richness comes with a drawback inherent to all coherent imaging modalities: a strong signal-dependent noise called "speckle." This paper addresses the mathematical issues of performing speckle reduction in a transformed domain: the matrix-log domain. Rather than directly estimating noiseless covariance matrices, recasting the denoising problem in terms of the matrix-log of the covariance matrices stabilizes noise fluctuations and makes it possible to apply off-the-shelf denoising algorithms. We refine the method MuLoG by replacing heuristic procedures with exact expressions and improving the estimation strategy. This corrects a bias of the original method and should facilitate and encourage the adaptation of general-purpose processing methods to SAR imaging.
引用
收藏
页码:298 / 320
页数:23
相关论文
共 53 条
[41]   The Little Engine That Could: Regularization by Denoising (RED) [J].
Romano, Yaniv ;
Elad, Michael ;
Milanfar, Peyman .
SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (04) :1804-1844
[42]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[43]  
Ryu EK, 2019, PR MACH LEARN RES, V97
[44]   Removing Multiplicative Noise by Douglas-Rachford Splitting Methods [J].
Steidl, G. ;
Teuber, T. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2010, 36 (02) :168-184
[45]   ENHANCED CONVERGENT PNP ALGORITHMS FOR IMAGE RESTORATION [J].
Terris, Matthieu ;
Repetti, Audrey ;
Pesquet, Jean-Christophe ;
Wiaux, Yves .
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, :1684-1688
[46]   Coherence estimation for SAR imagery [J].
Touzi, R ;
Lopes, A ;
Bruniquel, J ;
Vachon, PW .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (01) :135-149
[47]   Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation [J].
Vasile, Gabriel ;
Trouve, Emmanuel ;
Lee, Jong-Sen ;
Buzuloiu, Vasile .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1609-1621
[48]  
Venkatakrishnan S, 2013, IEEE GLOB CONF SIG, P945, DOI 10.1109/GlobalSIP.2013.6737048
[49]   Statistical properties of logarithmically transformed speckle [J].
Xie, H ;
Pierce, LE ;
Ulaby, FT .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (03) :721-727
[50]  
ZHANG K, 2017, PROC CVPR IEEE, P2808, DOI [10.1109/CVPR.2017.300, DOI 10.1109/CVPR.2017.300]