Speckle Reduction in Matrix-Log Domain for Synthetic Aperture Radar Imaging

被引:9
作者
Deledalle, Charles-Alban [1 ]
Denis, Loic [2 ]
Tupin, Florence [3 ]
机构
[1] Univ Bordeaux, Bordeaux INP, CNRS, IMB, F-33405 Talence, France
[2] Univ Lyon, UJM St Etienne, CNRS, Inst Opt,Grad Sch,Lab Hubert Curien,UMR 5516, F-42023 St Etienne, France
[3] Telecom Paris, Inst Polytech Paris, LTCI, Palaiseau, France
关键词
Covariance matrix; Denoising; Synthetic aperture radar; Plug-in ADMM; Estimation; Regularization; SAR; REGULARIZATION; SIGNAL;
D O I
10.1007/s10851-022-01067-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Synthetic aperture radar (SAR) images are widely used for Earth observation to complement optical imaging. By combining information on the polarization and the phase shift of the radar echos, SAR images offer high sensitivity to the geometry and materials that compose a scene. This information richness comes with a drawback inherent to all coherent imaging modalities: a strong signal-dependent noise called "speckle." This paper addresses the mathematical issues of performing speckle reduction in a transformed domain: the matrix-log domain. Rather than directly estimating noiseless covariance matrices, recasting the denoising problem in terms of the matrix-log of the covariance matrices stabilizes noise fluctuations and makes it possible to apply off-the-shelf denoising algorithms. We refine the method MuLoG by replacing heuristic procedures with exact expressions and improving the estimation strategy. This corrects a bias of the original method and should facilitate and encourage the adaptation of general-purpose processing methods to SAR imaging.
引用
收藏
页码:298 / 320
页数:23
相关论文
共 53 条
[11]  
Dalsasso E., IEEE J SELECT TOP AP
[12]   As If by Magic: Self-Supervised Training of Deep Despeckling Networks With MERLIN [J].
Dalsasso, Emanuele ;
Denis, Loic ;
Tupin, Florence .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[13]   SAR Image Despeckling by Deep Neural Networks: from a Pre-Trained Model to an End-to-End Training Strategy [J].
Dalsasso, Emanuele ;
Yang, Xiangli ;
Denis, Loic ;
Tupin, Florence ;
Yang, Wen .
REMOTE SENSING, 2020, 12 (16)
[14]   MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction? [J].
Deledalle, Charles-Alban ;
Denis, Loic ;
Tabti, Sonia ;
Tupin, Florence .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) :4389-4403
[15]   NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR Denoising [J].
Deledalle, Charles-Alban ;
Denis, Loic ;
Tupin, Florence ;
Reigber, Andreas ;
Jaeger, Marc .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04) :2021-2038
[16]   NL-InSAR: Nonlocal Interferogram Estimation [J].
Deledalle, Charles-Alban ;
Denis, Loic ;
Tupin, Florence .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (04) :1441-1452
[17]   Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights [J].
Deledalle, Charles-Alban ;
Denis, Loic ;
Tupin, Florence .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (12) :2661-2672
[18]   SAR Image Regularization With Fast Approximate Discrete Minimization [J].
Denis, Loic ;
Tupin, Florence ;
Darbon, Jerome ;
Sigelle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (07) :1588-1600
[19]   Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients [J].
Durand, Sylvain ;
Fadili, Jalal ;
Nikolova, Mila .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2010, 36 (03) :201-226
[20]   InSAR Deformation Analysis with Distributed Scatterers: A Review Complemented by New Advances [J].
Even, Markus ;
Schulz, Karsten .
REMOTE SENSING, 2018, 10 (05)