The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups

被引:0
作者
Kozlov, V. A. [1 ]
Titov, G. N. [2 ]
机构
[1] Armavir State Pedag Univ, 159 Rosa Luxemburg St, Armavir 352901, Russia
[2] Kuhan State Univ, 149 Stavropolskaya St, Krasnodar 350040, Russia
来源
IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS | 2021年 / 21卷 / 04期
关键词
group; cyclic commutator subgroup; subdirect product of groups; Sylow subgroup; semidirect product of groups; centralizer; group extension; supersolvable group; FINITE P-GROUPS;
D O I
10.18500/1816-9791-2021-21-4-442-447
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article studies finite groups indecomposable to subdirect product of groups (subdirectly irreducible groups), commutator subgroups of which are cyclic subgroups. The article proves that extensions of a primary cyclic group by any subgroup of its automorphisms completely describe the structure of non-primary finite subdirectly irreducible groups with a cyclic commutator subgroup. The following theorem is the main result of this article: a finite nonprimary group is subdirectly irreducible with a cyclic commutator subgroup if arid only if for some prime number p >= 3 it contains a non-trivial normal cyclic p-subgroup that coincides with its centralizer in the group. In addition, it is shown that the requirement of non-primality in the statement of the theorem is essential.
引用
收藏
页码:442 / 447
页数:6
相关论文
共 13 条
[1]   ON FINITE P-GROUPS WITH CYCLIC COMMUTATOR SUBGROUP [J].
CHENG, Y .
ARCHIV DER MATHEMATIK, 1982, 39 (04) :295-298
[2]  
Chernikov S. N, 1980, GRUPPY S ZADANNYMI S
[3]  
DARK RS, 1978, J LOND MATH SOC, V17, P251
[4]   Finite p-groups with cyclic commutator subgroup and cyclic center [J].
Finogenov, AA .
MATHEMATICAL NOTES, 1998, 63 (5-6) :802-812
[5]  
Gorchakov Yu. M, 1998, TEORIYA GRUPP
[6]  
Gorchakov Yu. M, 1978, GRUPPY S KONECHNYMI
[7]  
Hall M., 1962, TEORIYA GRUPP
[8]  
Kargapolov M.I, 1979, FUNDAMENTALS THEORY
[9]  
Leong Y. K, 1974, J AUST MATH SOC, V17, P142, DOI [10.1017/S1446788700016724, DOI 10.1017/S1446788700016724]
[10]  
Leong Y. K, 1979, J AUST MATH SOC, V27, P125, DOI [10.1017/S1446788700012052, DOI 10.1017/S1446788700012052]