Topological magnetic crystalline insulators and corepresentation theory

被引:49
作者
Zhang, Rui-Xing [1 ]
Liu, Chao-Xing [1 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
关键词
SINGLE DIRAC CONE; EXPERIMENTAL REALIZATION; PHASE-TRANSITION; SURFACE-STATES;
D O I
10.1103/PhysRevB.91.115317
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gapless surface states of time reversal invariant topological insulators are protected by the antiunitary nature of the time-reversal operation. Very recently, this idea was generalized to magnetic structures, in which time-reversal symmetry is explicitly broken, but there is still an antiunitary symmetry operation combining time-reversal symmetry and crystalline symmetry. These topological phases in magnetic structures are dubbed "topological magnetic crystalline insulators." In this work, we present a general theory of topological magnetic crystalline insulators in different types of magnetic crystals based on the corepresentation theory of magnetic crystalline symmetry groups. We construct two concrete tight-binding models of topological magnetic crystalline insulators, the (C) over cap (4)(Theta) over cap model and the (tau) over cap(Theta) over cap model, in which topological surface states and topological invariants are calculated explicitly. Moreover, we check different types of antiunitary operators in magnetic systems and find that the systems with (C) over cap (4)(Theta) over cap, (C) over cap (6)(Theta) over cap, and (tau) over cap(Theta) over cap symmetry are able to protect gapless surface states. Our work will pave the way to search for topological magnetic crystalline insulators in realistic magnetic materials.
引用
收藏
页数:15
相关论文
共 56 条
[1]   STM Imaging of Electronic Waves on the Surface of Bi2Te3: Topologically Protected Surface States and Hexagonal Warping Effects [J].
Alpichshev, Zhanybek ;
Analytis, J. G. ;
Chu, J. -H. ;
Fisher, I. R. ;
Chen, Y. L. ;
Shen, Z. X. ;
Fang, A. ;
Kapitulnik, A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (01)
[2]   Two-dimensional surface state in the quantum limit of a topological insulator [J].
Analytis, James G. ;
McDonald, Ross D. ;
Riggs, Scott C. ;
Chu, Jiun-Haw ;
Boebinger, G. S. ;
Fisher, Ian R. .
NATURE PHYSICS, 2010, 6 (12) :960-964
[3]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[4]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[5]   MAGNETIC GROUPS AND THEIR COREPRESENTATIONS [J].
BRADLEY, CJ ;
DAVIES, BL .
REVIEWS OF MODERN PHYSICS, 1968, 40 (02) :359-+
[6]   Quantum Hall Effect from the Topological Surface States of Strained Bulk HgTe [J].
Bruene, C. ;
Liu, C. X. ;
Novik, E. G. ;
Hankiewicz, E. M. ;
Buhmann, H. ;
Chen, Y. L. ;
Qi, X. L. ;
Shen, Z. X. ;
Zhang, S. C. ;
Molenkamp, L. W. .
PHYSICAL REVIEW LETTERS, 2011, 106 (12)
[7]   Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator [J].
Chen, Y. L. ;
Chu, J. -H. ;
Analytis, J. G. ;
Liu, Z. K. ;
Igarashi, K. ;
Kuo, H. -H. ;
Qi, X. L. ;
Mo, S. K. ;
Moore, R. G. ;
Lu, D. H. ;
Hashimoto, M. ;
Sasagawa, T. ;
Zhang, S. C. ;
Fisher, I. R. ;
Hussain, Z. ;
Shen, Z. X. .
SCIENCE, 2010, 329 (5992) :659-662
[8]   Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 [J].
Chen, Y. L. ;
Analytis, J. G. ;
Chu, J. -H. ;
Liu, Z. K. ;
Mo, S. -K. ;
Qi, X. L. ;
Zhang, H. J. ;
Lu, D. H. ;
Dai, X. ;
Fang, Z. ;
Zhang, S. C. ;
Fisher, I. R. ;
Hussain, Z. ;
Shen, Z. -X. .
SCIENCE, 2009, 325 (5937) :178-181
[9]  
Dresselhaus M. S., 2007, Group Theory: Application to the Physics of Condensed Matter
[10]  
Dziawa P, 2012, NAT MATER, V11, P1023, DOI [10.1038/nmat3449, 10.1038/NMAT3449]