A density functional theory study of the adsorption behaviour of CO2 on Cu2O surfaces

被引:65
|
作者
Mishra, Abhishek Kumar [1 ,2 ]
Roldan, Alberto [3 ]
de Leeuw, Nora H. [2 ,3 ]
机构
[1] Univ Petr & Energy Studies, Res & Dev, Bidholi 248007, Dehradun, India
[2] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[3] Cardiff Univ, Sch Chem, Main Bldg,Pk Pl, Cardiff CF10 3AT, S Glam, Wales
基金
英国工程与自然科学研究理事会;
关键词
INITIO MOLECULAR-DYNAMICS; COPPER-OXIDE NANOCRYSTALS; TOTAL-ENERGY CALCULATIONS; ELECTROCHEMICAL REDUCTION; ELECTRONIC-STRUCTURE; OXYGEN-VACANCY; CU2O(111); STABILITY; METHANOL; DISSOCIATION;
D O I
10.1063/1.4958804
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Copper has many applications, particularly in electro-catalysis, where the oxidation state of the copper electrode plays a significant role in the selectivity towards products. Although copper-based materials have clear potential as catalysts in the reduction of CO2 and conversion to products, fundamental understanding of CO2 adsorption and activation on different copper oxide surfaces is still limited. We have used DFT+U methodology to study the surface reconstruction of the three most exposed (111), (110), and (001) surfaces of Cu2O with different possible terminations. Considering several adsorbate geometries, we have investigated CO2 adsorption on five different possible terminations and proposed eight different configurations in which CO2 binds with the surface. Similar to earlier findings, CO2 binds weakly with the most stable Cu2O(111):O surface showing no molecular activation, whereas a number of other surfaces, which can appear in the Cu2O particles morphology, show stronger binding as well as activation of the CO2 molecule. Different CO2 coverages were studied and a detailed structural and electronic charge analysis is presented. The activation of the CO2 molecule is characterized by structural transformations and charge transfer between the surface and the CO2 molecule, which is further confirmed by considerable red shifts in the vibrational frequencies. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Density Functional Theory Study of CO2 Adsorption in Amine-Functionalized Carbonaceous Materials
    Wang Juan
    Li Shi-Kun
    Zhao Zhen-Chao
    Zhou Dan-Hong
    Lu An-Hui
    Zhang Wei-Ping
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (07) : 1666 - +
  • [42] Plasmonic Energetic Electrons Drive CO2 Reduction on Defective Cu2O
    Le, Tien
    Salavati-fard, Taha
    Wang, Bin
    ACS CATALYSIS, 2023, 13 (09) : 6328 - 6337
  • [43] Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles
    Zhang, Wenfei
    Zhou, Qulan
    Qi, Ji
    Li, Na
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2021, 134 (01) : 243 - 257
  • [44] A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3) Surfaces
    Dzade, Nelson Y.
    Roldan, Alberto
    de Leeuw, Nora H.
    MINERALS, 2014, 4 (01) : 89 - 115
  • [45] Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects
    de Brito, Juliana Ferreira
    Araujo, Angela Regina
    Rajeshwar, Krishnan
    Boldrin Zanoni, Maria Valnice
    CHEMICAL ENGINEERING JOURNAL, 2015, 264 : 302 - 309
  • [46] A DFT Study of CO Adsorption on the Cu2O(111) Surface with Oxygen Vacancy
    Sun Bao-Zhen
    Chen Wen-Kai
    Li Yi
    Lu Chun-Hai
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2009, 28 (03) : 311 - 314
  • [47] A DFT Study of CO Adsorption on the Cu2O(111) Surface with Oxygen Vacancy
    孙宝珍
    陈文凯
    李奕
    陆春海
    Chinese Journal of Structural Chemistry, 2009, (03) : 311 - 314
  • [48] Synergistic effect of Cu/Cu2O surfaces and interfaces for boosting electrosynthesis of ethylene from CO2 in a Zn-CO2 battery
    Jia, Zhichao
    Han, Dandan
    Chang, Fangfang
    Fu, Xiaogang
    Bai, Zhengyu
    Yang, Lin
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (18) : 5671 - 5678
  • [49] CO2 and H2 Adsorption and Reaction at Nin/YSZ(111) Interfaces: A Density Functional Theory Study
    Cadi-Essadek, Abdelaziz
    Roldan, Alberto
    Aparicio-Angles, Xavier
    de Leeuw, Nora H.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (34) : 19463 - 19472
  • [50] A density functional theory study on the adsorption reaction mechanism of double CO2 on the surface of graphene defects
    Zhang, Shujie
    Liang, Zeng
    Li, Kejiang
    Zhang, Jianliang
    Ren, Shan
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (05)