A density functional theory study of the adsorption behaviour of CO2 on Cu2O surfaces

被引:65
|
作者
Mishra, Abhishek Kumar [1 ,2 ]
Roldan, Alberto [3 ]
de Leeuw, Nora H. [2 ,3 ]
机构
[1] Univ Petr & Energy Studies, Res & Dev, Bidholi 248007, Dehradun, India
[2] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[3] Cardiff Univ, Sch Chem, Main Bldg,Pk Pl, Cardiff CF10 3AT, S Glam, Wales
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 145卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
INITIO MOLECULAR-DYNAMICS; COPPER-OXIDE NANOCRYSTALS; TOTAL-ENERGY CALCULATIONS; ELECTROCHEMICAL REDUCTION; ELECTRONIC-STRUCTURE; OXYGEN-VACANCY; CU2O(111); STABILITY; METHANOL; DISSOCIATION;
D O I
10.1063/1.4958804
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Copper has many applications, particularly in electro-catalysis, where the oxidation state of the copper electrode plays a significant role in the selectivity towards products. Although copper-based materials have clear potential as catalysts in the reduction of CO2 and conversion to products, fundamental understanding of CO2 adsorption and activation on different copper oxide surfaces is still limited. We have used DFT+U methodology to study the surface reconstruction of the three most exposed (111), (110), and (001) surfaces of Cu2O with different possible terminations. Considering several adsorbate geometries, we have investigated CO2 adsorption on five different possible terminations and proposed eight different configurations in which CO2 binds with the surface. Similar to earlier findings, CO2 binds weakly with the most stable Cu2O(111):O surface showing no molecular activation, whereas a number of other surfaces, which can appear in the Cu2O particles morphology, show stronger binding as well as activation of the CO2 molecule. Different CO2 coverages were studied and a detailed structural and electronic charge analysis is presented. The activation of the CO2 molecule is characterized by structural transformations and charge transfer between the surface and the CO2 molecule, which is further confirmed by considerable red shifts in the vibrational frequencies. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Adsorption of 2-chlorophenol on Cu2O(111)-CuCUS: A first-principles density functional study
    Altarawneh, Mohammednoor
    Radny, Marian W.
    Smith, Phillip V.
    Mackie, John C.
    Kennedy, Eric M.
    Dlugogorski, Bogdan Z.
    Soon, Aloysius
    Stampfl, Catherine
    APPLIED SURFACE SCIENCE, 2010, 256 (15) : 4764 - 4770
  • [32] NO adsorption on Cu(110) and O(2 x 1)/Cu(110) surfaces from density functional theory calculations
    Brion-Rios, Anton X.
    Sanchez-Portal, Daniel
    Cabrera-Sanfelix, Pepa
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (14) : 9476 - 9483
  • [33] Density Functional Theory Study of CO2 Adsorption and Reduction on Stoichiometric and Doped Ceria
    Kumari, Neetu
    Haider, M. Ali
    Sinha, Nishant
    Basu, S.
    LOW-TEMPERATURE FUEL CELLS, ELECTROLYZERS, AND REDOX FLOW CELLS, 2015, 68 (03): : 155 - 166
  • [34] Density functional theory study of H2O adsorption on different sphalerite surfaces
    Deng, Zheng-bin
    Tong, Xiong
    Huang, Ling-yun
    Xie, Xian
    PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING, 2019, 55 (01): : 82 - 88
  • [35] Density functional theory periodic slab calculations of adsorption and dissociation of H2O on the Cu2O(110):CuO surface
    Saraireh, Sherin A.
    Altarawneh, Mohammednoor
    CANADIAN JOURNAL OF PHYSICS, 2013, 91 (12) : 1101 - 1106
  • [36] Adsorption of CO2, CH4 and H2O on clay surfaces: Density functional theory calculations of structure and dynamics
    Tribe, Lorena
    Kilmer, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [37] Selective oxidation of vinyl chloride on Ag2O(100), Cu2O(100), and Au2O(100) surfaces: A density functional theory study
    Ren, Rui-Peng
    Cheng, Lu
    Lv, Yong-Kang
    SURFACE SCIENCE, 2014, 630 : 116 - 124
  • [38] Enhanced competitive adsorption of CO2 and H2 on graphyne: A density functional theory study
    Kwon, Hyuk Jae
    Kwon, Yongju
    Kim, Taeyoon
    Jung, Youngsuk
    Lee, Seunggeol
    Cho, Min
    Kwon, Soonchul
    AIP ADVANCES, 2017, 7 (12):
  • [39] Mechanistic Understanding of CO2 Electroreduction on Cu2O
    Qi, Liujian
    Liu, Shanping
    Gao, Wang
    Jiang, Qing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (10): : 5472 - 5480
  • [40] Solvent effects on Cu2O(111) surface properties and CO adsorption on Cu2O(111) surface: A DFT study
    Zhang, Riguang
    Ling, Lixia
    Li, Zhong
    Wang, Baojun
    APPLIED CATALYSIS A-GENERAL, 2011, 400 (1-2) : 142 - 147