Scalar discrete nonlinear two-point boundary value problems

被引:19
作者
Etheridge, DL [1 ]
Rodriguez, J [1 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
boundary value problem; Alternative Method; projection;
D O I
10.1080/10236199808808133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish conditions for the existence of solutions to nonlinear boundary value problems of the form y(t+n)+a(n-1)(t)y(t+n-1) + ... + a(0)(t)y(t) = k(t) + f(y(t+m-1)) subject to j=0 Sigma n-1 b(ij)y(j)+j=0 Sigma n-1 d(ij)y(j+N) = 0, i = 1,2,...n
引用
收藏
页码:127 / 144
页数:18
相关论文
共 5 条
[1]  
[Anonymous], INTRO DYNAMIC SYSTEM
[2]   ALTERNATIVE PROBLEMS FOR NONLINEAR FUNCTIONAL EQUATIONS [J].
BANCROFT, S ;
HALE, JK ;
SWEET, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1968, 4 (01) :40-&
[3]  
HALE JK, 1980, ORDINARY DIFFERNETIA
[4]  
LANDESMAN EM, 1970, J MATH MECH, V19, P609
[5]  
RODRIGUEZ J, 1985, APPL ANAL, V19, P265, DOI 10.1080/00036818508839551