Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases

被引:3
作者
Ahmad, Ghufran [1 ]
Ahmed, Furqan [2 ,3 ]
Rizwan, Muhammad Suhail [4 ]
Muhammad, Javed [5 ]
Fatima, Syeda Hira [6 ]
Ikram, Aamer [7 ]
Zeeb, Hajo [2 ,3 ]
机构
[1] Natl Univ Sci & Technol NUST, Dept Int Business & Mkt, Islamabad, Pakistan
[2] Leibniz Inst Prevent Res & Epidemiol, Bremen, Germany
[3] Univ Bremen, Hlth Sci Bremen, Bremen, Germany
[4] Natl Univ Sci & Technol NUST, Dept Finance & Investment, Islamabad, Pakistan
[5] Univ Haripur, Dept Microbiol, Haripur, Pakistan
[6] Univ Adelaide, Sch Publ Hlth, Adelaide, SA, Australia
[7] Natl Inst Hlth, Islamabad, Pakistan
关键词
TIME-SERIES; SEIR MODEL; GLOBAL DYNAMICS;
D O I
10.1371/journal.pone.0252147
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background The WHO announced the epidemic of SARS-CoV2 as a public health emergency of international concern on 30th January 2020. To date, it has spread to more than 200 countries and has been declared a global pandemic. For appropriate preparedness, containment, and mitigation response, the stakeholders and policymakers require prior guidance on the propagation of SARS-CoV2. Methodology This study aims to provide such guidance by forecasting the cumulative COVID-19 cases up to 4 weeks ahead for 187 countries, using four data-driven methodologies; autoregressive integrated moving average (ARIMA), exponential smoothing model (ETS), and random walk forecasts (RWF) with and without drift. For these forecasts, we evaluate the accuracy and systematic errors using the Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE), respectively. Findings The results show that the ARIMA and ETS methods outperform the other two forecasting methods. Additionally, using these forecasts, we generate heat maps to provide a pictorial representation of the countries at risk of having an increase in the cases in the coming 4 weeks of February 2021. Conclusion Due to limited data availability during the ongoing pandemic, less data-hungry short-term forecasting models, like ARIMA and ETS, can help in anticipating the future outbreaks of SARS-CoV2.
引用
收藏
页数:21
相关论文
共 29 条
[1]   The proximal origin of SARS-CoV-2 [J].
Andersen, Kristian G. ;
Rambaut, Andrew ;
Lipkin, W. Ian ;
Holmes, Edward C. ;
Garry, Robert F. .
NATURE MEDICINE, 2020, 26 (04) :450-452
[2]   How will country-based mitigation measures influence the course of the COVID-19 epidemic? [J].
Anderson, Roy M. ;
Heesterbeek, Hans ;
Klinkenberg, Don ;
Hollingsworth, T. Deirdre .
LANCET, 2020, 395 (10228) :931-934
[3]   Developing Vaccines for SARS-CoV-2 and Future Epidemics and Pandemics: Applying Lessons from Past Outbreaks [J].
Billington, John ;
Deschamps, Isabelle ;
Erck, Stanley C. ;
Gerberding, Julie L. ;
Hanon, Emmanuel ;
Ivol, Sabrina ;
Shiver, John W. ;
Spencer, Julia A. ;
Van Hoof, Johan .
HEALTH SECURITY, 2020, 18 (03) :241-249
[4]  
Cheng C., 2020, WORLD COVID 19 INTEL, P1, DOI DOI 10.2139/SSRN.3614794
[5]   Vaccine hesitancy: the next challenge in the fight against COVID-19 [J].
Dror, Amiel A. ;
Eisenbach, Netanel ;
Taiber, Shahar ;
Morozov, Nicole G. ;
Mizrachi, Matti ;
Zigron, Asaf ;
Srouji, Samer ;
Sela, Eyal .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2020, 35 (08) :775-779
[6]   Coronavirus disease 2019: What we know? [J].
He, Feng ;
Deng, Yu ;
Li, Weina .
JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (07) :719-725
[7]  
Hu B., 2020, Nature, V579, P273, DOI DOI 10.1038/S41586-020-2012-7
[8]   Automatic time series forecasting: The forecast package for R [J].
Hyndman, Rob J. ;
Khandakar, Yeasmin .
JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (03) :1-22
[9]  
Hyndman Rob J., 2018, Principles of Optimal Design, P421, DOI [10.1017/9781316451038.010, DOI 10.1017/9781316451038.010]
[10]   Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico [J].
Johansson, Michael A. ;
Reich, Nicholas G. ;
Hota, Aditi ;
Brownstein, John S. ;
Santillana, Mauricio .
SCIENTIFIC REPORTS, 2016, 6