LGM Split Sampler: An Efficient MCMC Sampling Scheme for Latent Gaussian Models

被引:6
作者
Geirsson, Oli Pall [1 ]
Hrafnkelsson, Birgir [2 ]
Simpson, Daniel [3 ]
Sigurdarson, Helgi [4 ]
机构
[1] City Reykjavik, Borgartun 12-14, IS-105 Reykjavik, Iceland
[2] Univ Iceland, Fac Phys Sci, Dept Math, Stat, Dunhagi 5, IS-107 Reykjavik, Iceland
[3] Univ Toronto, Dept Stat Sci, 100 St George St, Toronto, ON M5S 3G3, Canada
[4] Isavia, Air Nav Serv, 102 Reykjavik, IS-102 Reykjavik, Iceland
关键词
Bayesian hierarchical models; Gibbs sampling; latent Gaussian models; Markov chain Monte Carlo; posterior simulation; PRECIPITATION; LANGEVIN; INLA;
D O I
10.1214/19-STS727
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A general and flexible class of latent Gaussian models is proposed in this paper. The latent Gaussian model is adapted to the generalized additive model for location, scale and shape (GAMLSS), that is, the data density function of each data point can depend on more than a single linear predictor of the latent parameters. We refer to this framework as extended latent Gaussian models. The most commonly applied latent Gaussian models (LGMs) are such that a linear predictor is proposed only for the location parameter. Extended LGMs allow proposing linear predictors also for the scale parameter and potentially other parameters. We propose a novel computationally efficient Markov chain Monte Carlo sampling scheme for the extended LGMs which we refer to as the LGM split sampler. It is a two block Gibbs sampling scheme designed to exploit the model structure of the extended LGMs. An extended LGM is constructed for a simulated dataset and the LGM split sampler is implemented for posterior simulations. The results demonstrate the flexibility of the extended LGM framework and the efficiency of the LGM split sampler.
引用
收藏
页码:218 / 233
页数:16
相关论文
共 37 条
[1]  
[Anonymous], BAYESIAN DIS MAPPING
[2]  
[Anonymous], CRGTR931 U TOR
[3]  
[Anonymous], WILEY SERIES PROBABI
[4]  
[Anonymous], 2005, MONOGRAPHS STAT APPL, DOI DOI 10.1201/9780203492024
[5]  
Bobee B, 1996, J HYDROL, V186, P63
[6]   Bayesian spatial modeling of extreme precipitation return levels [J].
Cooley, Daniel ;
Nychka, Douglas ;
Naveau, Philippe .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) :824-840
[7]  
Cressie NAC, 1993, Statistics for spatial data, DOI [10.1002/9781119115151, DOI 10.1002/9781119115151]
[8]  
Crochet P., 2012, 62012005 IC MET OFF
[9]   Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation [J].
Crochet, Philippe ;
Johannesson, Tomas ;
Jonsson, Trausti ;
Sigurdsson, Oddur ;
Bjoensson, Helgi ;
Palsson, Finnur ;
Barstad, Idar .
JOURNAL OF HYDROMETEOROLOGY, 2007, 8 (06) :1285-1306
[10]   Statistical Modeling of Spatial Extremes [J].
Davison, A. C. ;
Padoan, S. A. ;
Ribatet, M. .
STATISTICAL SCIENCE, 2012, 27 (02) :161-186