Influence of graphite surface modifications on the ratio of basal plane to "non-basal plane" surface area and on the anode performance in lithium ion batteries

被引:154
作者
Placke, T. [1 ]
Siozios, V. [1 ]
Schmitz, R. [1 ]
Lux, S. F. [1 ]
Bieker, P. [1 ]
Colle, C. [1 ]
Meyer, H. -W. [1 ]
Passerini, S. [1 ]
Winter, M. [1 ]
机构
[1] Univ Munster, MEET, Inst Phys Chem, D-48149 Munster, Germany
关键词
Lithium ion batteries; Graphite anode; Surface modification; Solid electrolyte interphase (SEI); Nitrogen adsorption; Adsorptive potential distribution; SOLID-ELECTROLYTE INTERPHASE; NATURAL GRAPHITE; PHYSICAL ADSORPTION; NEGATIVE ELECTRODES; CHARGE LOSS; CARBON; INTERCALATION; INTERFACE; OXIDATION; INSERTION;
D O I
10.1016/j.jpowsour.2011.10.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For graphitic carbons as anode materials in lithium ion batteries, the morphology and chemistry of the graphite surface have a significant impact on the formation of the solid electrolyte interphase (SEI), the corresponding irreversible charge losses, and the overall electrochemical anode performance. In this work the effects of graphite surface modification, induced by an elevated temperature treatment, on the SEI formation are discussed in details. Morphology changes due to burn-off of carbon are investigated by Raman spectroscopy and nitrogen adsorption measurements, which are not only used to calculate the BET specific surface area but also for the estimation of the absolute and relative extents of the basal plane surface area and the "non-basal plane surface" area. In particular, the relation of the first cycle irreversible charge loss to the change of surface morphology, especially to the quantitative amounts of the different types of surfaces is highlighted. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 32 条
[1]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[2]   A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries [J].
Bar-Tow, D ;
Peled, E ;
Burstein, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :824-832
[3]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[4]   XPS studies of graphite electrode materials for lithium ion batteries [J].
Blyth, RIR ;
Buqa, H ;
Netzer, FP ;
Ramsey, MG ;
Besenhard, JO ;
Golob, P ;
Winter, M .
APPLIED SURFACE SCIENCE, 2000, 167 (1-2) :99-106
[5]   Negative Electrodes in Rechargeable Lithium Ion Batteries - Influence of Graphite Surface Modification on the Formation of the Solid Electrolyte Interphase [J].
Buqa, H. ;
Blyth, R. I. R. ;
Golob, P. ;
Evers, B. ;
Schneider, I. ;
Alvarez, M. V. Santis ;
Hofer, F. ;
Netzer, F. P. ;
Ramsey, M. G. ;
Winter, M. ;
Besenhard, J. O. .
IONICS, 2000, 6 (3-4) :172-179
[6]   Modified carbons for improved anodes in lithium ion cells [J].
Buqa, H ;
Golob, P ;
Winter, M ;
Besenhard, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :122-125
[7]   Chemical oxidation: A route to enhanced capacity in Li-ion graphite anodes [J].
EinEli, Y ;
Koch, VR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2968-2973
[8]   Raman spectroscopic and structural studies of heat-treated graphites for lithium-ion batteries [J].
Goers, D ;
Buqa, H ;
Hardwick, L ;
Wursig, A ;
Novák, P .
IONICS, 2003, 9 (3-4) :258-265
[9]   In situ Raman studies of graphite surface structures during lithium electrochemical intercalation [J].
Huang, WW ;
Frech, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) :765-770
[10]   Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries [J].
Joho, F ;
Rykart, B ;
Blome, A ;
Novák, P ;
Wilhelm, H ;
Spahr, ME .
JOURNAL OF POWER SOURCES, 2001, 97-8 :78-82