A novel benzothiazole modified chitosan (BCS) with excellent Au(III) adsorption performance and selectivity was prepared as adsorbents. The structure and morphology of the adsorbents were characterized by FTIR, SEM, XRD and XPS. The adsorption property of the adsorbents for Au(III) were investigated under different reaction time, initial concentration of Au(III), temperature, pH and coexisting ions. The maximum adsorption capacity of BCS for Au(III) was 1072.22 mg/g at 298 K and optimal pH = 4, which was better than that of other adsorbents reported in literature. The adsorption kinetics and isotherm models fit the pseudo-second-order and Langmuir equations. This shows that the adsorption process of Au(III) is a monolayer chemical adsorption. The adsorption process can proceed spontaneously and belong to the endothermic reaction according to the thermodynamic results. The excellent adsorption performance is mainly attributed to the ion exchange and chelation of the nitrogen, sulfur and oxygen groups on the adsorbent with gold ions. Significantly, BCS has excellent selectivity toward Au(III) and remarkable recycle performance. With the high adsorption capacity, excellent selectivity and outstanding reusability, the BCS adsorbent could be a promising candidate to adsorb Au(III) from wastewater.