A High-Performance Nonfused Wide-Bandgap Acceptor for Versatile Photovoltaic Applications

被引:92
|
作者
Bi, Pengqing [1 ]
Zhang, Shaoqing [1 ,2 ]
Ren, Junzhen [1 ,3 ]
Chen, Zhihao [4 ]
Zheng, Zhong [1 ,2 ]
Cui, Yong [1 ]
Wang, Jianqiu [1 ]
Wang, Shijie [5 ]
Zhang, Tao [1 ,3 ]
Li, Jiayao [1 ,3 ]
Xu, Ye [1 ,3 ]
Qin, Jinzhao [1 ,3 ]
An, Cunbin [1 ]
Ma, Wei [5 ]
Hao, Xiaotao [4 ]
Hou, Jianhui [1 ,3 ]
机构
[1] Chinese Acad Sci, State Key Lab Polymer Phys & Chem, Beijing Natl Lab Mol Sci CAS Res, Educ Ctr Excellence Mol Sci,Inst Chem, Beijing 100190, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[5] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
indoor photovoltaics; nonfused acceptors; organic photovoltaic cells; tandem cells; wide bandgap; EXCITON DIFFUSION LENGTH; ORGANIC SOLAR-CELLS; SEMICONDUCTORS;
D O I
10.1002/adma.202108090
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wide-bandgap (WBG) nonfullerene acceptors (NFAs) with nonfused conjugated structures play a critical role in organic photovoltaic (OPV) cells. Here, NFAs named GS-OEH, GS-OC6, and GS-ISO, with optical bandgaps larger than 1.70 eV, are synthesized without using the fused ring structures. Compared with GS-OEH and GS-OC6, GS-ISO exhibits much stronger crystallinity, leading to a smaller energetic disorder and a larger exciton diffusion coefficient. GS-ISO also possesses a higher electroluminescence external quantum efficiency of 1.0 x 10(-2). The OPV cell based on PBDB-TF:GS-ISO demonstrates a power conversion efficiency (PCE) of 11.62% under the standard one sun illumination. Besides, the PBDB-TF:GS-ISO-based cell with effective area of 1.0 cm(2) exhibits a PCE of 28.37% under 2700 K illumination of 500 lux. A tandem OPV cell using PBDB-TF:GS-ISO as the front subcell shows an outstanding efficiency of 19.10%. Importantly, the GS-ISO-based OPV cell exhibits promising stability under the continuous illumination of simulated sunlight. This study indicates that the molecular design strategy demonstrated in this work has great superiority in developing nonfused NFAs and also that GS-ISO is a promising WBG acceptor for versatile photovoltaic applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Molecular design of high-performance wide-bandgap acceptor enables versatile organic photovoltaic applications
    Xiao, Yang
    Wang, Jingwen
    Cui, Yong
    Wang, Yafei
    Chen, Zhihao
    Cheng, Shuohan
    Yuan, Haoyu
    Qiao, Jiawei
    Yang, Yi
    Wang, Wenxuan
    Yang, Ni
    Yu, Yue
    Yu, Runnan
    Hao, Xiaotao
    Hou, Jianhui
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,
  • [2] High-Performance, Wide-Bandgap Power Electronics
    Ty McNutt
    Brandon Passmore
    John Fraley
    Brice McPherson
    Robert Shaw
    Kraig Olejniczak
    Alex Lostetter
    Journal of Electronic Materials, 2014, 43 : 4552 - 4559
  • [3] High-Performance, Wide-Bandgap Power Electronics
    McNutt, Ty
    Passmore, Brandon
    Fraley, John
    Mcpherson, Brice
    Shaw, Robert
    Olejniczak, Kraig
    Lostetter, Alex
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (12) : 4552 - 4559
  • [4] Efficient Synthesis of High-Performance Wide-Bandgap Polymers Based on Difluoronaphthodithiophene: Fluorination Position Impact on Photovoltaic Performance
    Su, Zhiyi
    Liu, Wenlong
    Song, Haoming
    Wei, Nan
    Chen, Jieni
    Lin, Yi
    Zhang, Wenkai
    Xu, Xinjun
    Ma, Zaifei
    Li, Cuihong
    Zhang, Andong
    Liu, Yahui
    Bo, Zhishan
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (20): : 12644 - 12653
  • [5] Effects of a heteroatomic benzothienothiophenedione acceptor on the properties of a series of wide-bandgap photovoltaic polymers
    Huang, Xinxin
    Weng, Kangkang
    Huo, Lijun
    Fan, Bingbing
    Yang, Chunhe
    Sun, Xiaobo
    Sun, Yanming
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (38) : 9052 - 9059
  • [6] Wide-bandgap nanocrystalline silicon-carbon alloys for photovoltaic applications
    Cho, Jun-Sik
    Jang, Eunseok
    Lim, Dongmin
    Ahn, Seungkyu
    Yoo, Jinsu
    Cho, Ara
    Park, Joo Hyung
    Kim, Kihwan
    Choi, Bo-Hun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 : 220 - 227
  • [7] Defect passivation engineering of wide-bandgap perovskites for high-performance solar cells
    Wu, Xiao
    Xiong, Guoqing
    Yue, Ziyao
    Dong, Ziyao
    Cheng, Yuanhang
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (03) : 800 - 813
  • [8] A Comparative Evaluation of Wide-Bandgap Semiconductors for High-Performance Domestic Induction Heating
    Aslan, Sezer
    Ozturk, Metin
    Altintas, Nihan
    ENERGIES, 2023, 16 (10)
  • [9] Wide-bandgap semiconductor microtubular homojunction photodiode for high-performance UV detection
    Wang, Qiang
    Zou, Anshan
    Yang, Lixue
    Liu, Beiyun
    Zhang, Yulin
    Chen, Fei
    Wang, Jingyu
    Zhang, Shunshun
    Yan, Yinzhou
    Jiang, Yijian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 887
  • [10] Donor-acceptor pairs in wide-bandgap semiconductors for quantum technology applications
    Anil Bilgin
    Ian N. Hammock
    Jeremy Estes
    Yu Jin
    Hannes Bernien
    Alexander A. High
    Giulia Galli
    npj Computational Materials, 10