Solving an inverse Sturm-Liouville problem by a Lie-group method

被引:58
作者
Liu, Chein-Shan [1 ,2 ]
机构
[1] Natl Taiwan Ocean Univ, Dept Mech & Mechatron Engn, Chilung 20224, Taiwan
[2] Natl Taiwan Ocean Univ, Dept Harbor & River Engn, Chilung 20224, Taiwan
关键词
D O I
10.1155/2008/749865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solving an inverse Sturm-Liouville problem requires a mathematical process to determine unknown function in the Sturm-Liouville operator from given data in addition to the boundary values. In this paper, we identify a Sturm-Liouville potential function by using the data of one eigenfunction and its corresponding eigenvalue, and identify a spatial-dependent unknown function of a Sturm-Liouville differential operator. The method we employ is to transform the inverse Sturm-Liouville problem into a parameter identification problem of a heat conduction equation. Then a Lie-group estimation method is developed to estimate the coefficients in a system of ordinary differential equations discretized from the heat conduction equation. Numerical tests confirm the accuracy and efficiency of present approach. Definite and random disturbances are also considered when comparing the present method with that by using a technique of numerical differentiation. Copyright (C) 2008 Chein-Shan Liu.
引用
收藏
页数:18
相关论文
共 24 条
[1]   A scheme for stable numerical differentiation [J].
Ahn, S ;
Choi, UJ ;
Ramm, AG .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 186 (02) :325-334
[2]  
ANDREW AL, 2004, ANZIAM J E, V45, pC326
[3]   A SURVEY OF MATRIX INVERSE EIGENVALUE PROBLEMS [J].
BOLEY, D ;
GOLUB, GH .
INVERSE PROBLEMS, 1987, 3 (04) :595-622
[4]   A protocol for community based research [J].
Brown, L ;
Vega, W .
AMERICAN JOURNAL OF PREVENTIVE MEDICINE, 1996, 12 (04) :4-5
[5]  
Chen W., 2000, International Journal of Nonlinear Sciences and Numerical Simulation, V1, P145, DOI 10.1515/IJNSNS.2000.1.3.145
[6]   Inverse eigenvalue problems [J].
Chu, MT .
SIAM REVIEW, 1998, 40 (01) :1-39
[7]  
Gelfand I. M., 1955, AM MATH SOC TRANSL, V1, P253
[8]   SOLUTIONS OF INVERSE NODAL PROBLEMS [J].
HALD, OH ;
MCLAUGHLIN, JR .
INVERSE PROBLEMS, 1989, 5 (03) :307-347
[9]  
Iserles A., 2000, Acta Numerica, V9, P215, DOI 10.1017/S0962492900002154
[10]   Preserving algebraic invariants with Runge-Kutta methods [J].
Iserles, A ;
Zanna, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) :69-81