metPropagate: network-guided propagation of metabolomic information for prioritization of metabolic disease genes

被引:11
作者
Graham Linck, Emma J. [1 ]
Richmond, Phillip A. [1 ]
Tarailo-Graovac, Maja [2 ,3 ,4 ,5 ]
Engelke, Udo [6 ]
Kluijtmans, Leo A. J. [6 ]
Coene, Karlien L. M. [6 ]
Wevers, Ron A. [6 ]
Wasserman, Wyeth [1 ,7 ]
van Karnebeek, Clara D. M. [8 ,9 ]
Mostafavi, Sara [1 ,7 ,10 ]
机构
[1] Univ British Columbia, BC Childrens Hosp Res Inst, Ctr Mol Med & Therapeut, Vancouver, BC, Canada
[2] Univ Calgary, Cumming Sch Med, Dept Biochem, Calgary, AB, Canada
[3] Univ Calgary, Cumming Sch Med, Dept Mol Biol, Calgary, AB, Canada
[4] Univ Calgary, Cumming Sch Med, Dept Med Genet, Calgary, AB, Canada
[5] Univ Calgary, Alberta Childrens Hosp Res Inst, Calgary, AB, Canada
[6] Radboud Univ Nijmegen, Med Ctr, Dept Lab Med, Translat Metab Lab, Nijmegen, Netherlands
[7] Univ British Columbia, Dept Med Genet, Vancouver, BC, Canada
[8] Univ British Columbia, BC Childrens Hosp Res Inst, Dept Pediat, Ctr Mol Med & Therapeut, Vancouver, BC, Canada
[9] Radboud Univ Nijmegen, Med Ctr, Dept Pediat, Nijmegen, Netherlands
[10] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
INBORN-ERRORS; DISCOVERY; FRAMEWORK;
D O I
10.1038/s41525-020-0132-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Many inborn errors of metabolism (IEMs) are amenable to treatment, therefore early diagnosis is imperative. Whole-exome sequencing (WES) variant prioritization coupled with phenotype-guided clinical and bioinformatics expertise is typically used to identify disease-causing variants; however, it can be challenging to identify the causal candidate gene when a large number of rare and potentially pathogenic variants are detected. Here, we present a network-based approach, metPropagate, that uses untargeted metabolomics (UM) data from a single patient and a group of controls to prioritize candidate genes in patients with suspected IEMs. We validate metPropagate on 107 patients with IEMs diagnosed in Miller et al. (2015) and 11 patients with both CNS and metabolic abnormalities. The metPropagate method ranks candidate genes by label propagation, a graph-smoothing algorithm that considers each gene's metabolic perturbation in addition to the network of interactions between neighbors. metPropagate was able to prioritize at least one causative gene in the top 20(th)percentile of candidate genes for 92% of patients with known IEMs. Applied to patients with suspected neurometabolic disease, metPropagate placed at least one causative gene in the top 20(th)percentile in 9/11 patients, and ranked the causative gene more highly than Exomiser's phenotype-based ranking in 6/11 patients. Interestingly, ranking by a weighted combination of metPropagate and Exomiser scores resulted in improved prioritization. The results of this study indicate that network-based analysis of UM data can provide an additional mode of evidence to prioritize causal genes in patients with suspected IEMs.
引用
收藏
页数:11
相关论文
共 33 条
[1]   OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders [J].
Amberger, Joanna S. ;
Bocchini, Carol A. ;
Schiettecatte, Francois ;
Scott, Alan F. ;
Hamosh, Ada .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D789-D798
[2]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[3]   Next-generation metabolic screening: targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients [J].
Coene, Karlien L. M. ;
Kluijtmans, Leo A. J. ;
van der Heeft, Ed ;
Engelke, Udo F. H. ;
de Boer, Siebolt ;
Hoegen, Brechtje ;
Kwast, Hanneke J. T. ;
van de Vorst, Maartje ;
Huigen, Marleen C. D. G. ;
Keularts, Irene M. L. W. ;
Schreuder, Michiel F. ;
van Karnebeek, Clara D. M. ;
Wortmann, Saskia B. ;
de Vries, Maaike C. ;
Janssen, Mirian C. H. ;
Gilissen, Christian ;
Engel, Jasper ;
Wevers, Ron A. .
JOURNAL OF INHERITED METABOLIC DISEASE, 2018, 41 (03) :337-353
[4]   Carnitine palmitoyltransferase 1A (CPT1A) P479L prevalence in live newborns in Yukon, Northwest Territories, and Nunavut [J].
Collins, Sorcha A. ;
Sinclair, Graham ;
McIntosh, Sarah ;
Bamforth, Fiona ;
Thompson, Robert ;
Sobol, Isaac ;
Osborne, Geraldine ;
Corriveau, Andre ;
Santos, Maria ;
Hanley, Brendan ;
Greenberg, Cheryl R. ;
Valiance, Hilary ;
Arbour, Laura .
MOLECULAR GENETICS AND METABOLISM, 2010, 101 (2-3) :200-204
[5]   Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: Neurodevelopmental outcome [J].
Coughlin, Curtis R. ;
van Karnebeek, Clara D. M. ;
Al-Hertani, Walla ;
Shuen, Andrew Y. ;
Jaggumantri, Sravan ;
Jack, Rhona M. ;
Gaughan, Sommer ;
Burns, Casey ;
Mirsky, David M. ;
Gallagher, Renata C. ;
Van Hove, Johan L. K. .
MOLECULAR GENETICS AND METABOLISM, 2015, 116 (1-2) :35-43
[6]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+
[7]   The cost and diagnostic yield of exome sequencing for children with suspected genetic disorders: a benchmarking study [J].
Dragojlovic, Nick ;
Elliott, Alison M. ;
Adam, Shelin ;
van Karnebeek, Clara ;
Lehman, Anna ;
Mwenifumbo, Jill C. ;
Nelson, Tanya N. ;
du Souich, Christele ;
Friedman, Jan M. ;
Lynd, Larry D. .
GENETICS IN MEDICINE, 2018, 20 (09) :1013-1021
[8]   A proposed nosology of inborn errors of metabolism [J].
Ferreira, Carlos R. ;
van Karnebeek, Clara D. M. ;
Vockley, Jerry ;
Blau, Nenad .
GENETICS IN MEDICINE, 2019, 21 (01) :102-106
[9]   Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts [J].
Fresard, Laure ;
Smail, Craig ;
Ferraro, Nicole M. ;
Teran, Nicole A. ;
Li, Xin ;
Smith, Kevin S. ;
Bonner, Devon ;
Kernohan, Kristin D. ;
Marwaha, Shruti ;
Zappala, Zachary ;
Balliu, Brunilda ;
Davis, Joe R. ;
Liu, Boxiang ;
Prybol, Cameron J. ;
Kohler, Jennefer N. ;
Zastrow, Diane B. ;
Reuter, Chloe M. ;
Fisk, Dianna G. ;
Grove, Megan E. ;
Davidson, Jean M. ;
Hartley, Taila ;
Joshi, Ruchi ;
Strober, Benjamin J. ;
Utiramerur, Sowmithri ;
Lind, Lars ;
Ingelsson, Erik ;
Battle, Alexis ;
Bejerano, Gill ;
Bernstein, Jonathan A. ;
Ashley, Euan A. ;
Boycott, Kym M. ;
Merker, Jason D. ;
Wheeler, Matthew T. ;
Montgomery, Stephen B. ;
Adams, David R. ;
Aday, Aaron ;
Alejandro, Mercedes E. ;
Allard, Patrick ;
Ashley, Euan A. ;
Azamian, Mahshid S. ;
Bacino, Carlos A. ;
Baker, Eva ;
Balasubramanyam, Ashok ;
Barseghyan, Hayk ;
Batzli, Gabriel F. ;
Beggs, Alan H. ;
Behnam, Babak ;
Bellen, Hugo J. ;
Bernstein, Jonathan A. ;
Berry, Gerard T. .
NATURE MEDICINE, 2019, 25 (06) :911-+
[10]   The Impact of Multifunctional Genes on "Guilt by Association" Analysis [J].
Gillis, Jesse ;
Pavlidis, Paul .
PLOS ONE, 2011, 6 (02)