Models of intermediate spectral statistics

被引:227
作者
Bogomolny, EB [1 ]
Gerland, U
Schmit, C
机构
[1] Univ Paris 11, Div Phys Theor, Unite Rech, CNRS,Inst Phys Nucl, F-91406 Orsay, France
[2] Univ Paris 06, Inst Phys Nucl, Div Nucl Phys, Unite Rech,CNRS, F-91406 Orsay, France
关键词
D O I
10.1103/PhysRevE.59.R1315
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on numerical results it is conjectured that the spectral statistics of certain pseudointegrable billiards have a special form similar to that of the Anderson model at the transition point. A simple theoretical model where such statistics can be obtained analytically is briefly discussed. A few models with similar behavior are considered. In particular, we analytically found the eigenvalue statistics of a Poisson-distributed matrix perturbed by a rank one matrix, which is a good model for spectral statistics of a singular billiard. [S1063-651X(99)50902-1].
引用
收藏
页码:R1315 / R1318
页数:4
相关论文
共 24 条
[1]   Weak chaos in a quantum Kepler problem [J].
Altshuler, BL ;
Levitov, LS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 288 (1-6) :487-512
[2]   CORRELATORS OF SPECTRAL DETERMINANTS IN QUANTUM CHAOS [J].
ANDREEV, AV ;
SIMONS, BD .
PHYSICAL REVIEW LETTERS, 1995, 75 (12) :2304-2307
[3]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421
[4]   Gutzwiller's trace formula and spectral statistics: Beyond the diagonal approximation [J].
Bogomolny, EB ;
Keating, JP .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1472-1475
[5]  
BOHIGAS O, 1991, CHAOS QUANTUM PHYSIC
[6]  
BOHR A, 1969, NUCLEAR STRUCTURE, V1, P302
[7]   Boundary conditions at the mobility edge [J].
Braun, D ;
Montambaux, G ;
Pascaud, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1062-1065
[8]   STATISTICAL PROPERTIES OF THE EIGENVALUE MOTION OF HERMITIAN MATRICES [J].
FORRESTER, PJ .
PHYSICS LETTERS A, 1993, 173 (4-5) :355-359
[9]   Quantum localization in rough billiards [J].
Frahm, KM ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1440-1443
[10]   STATISTICAL PROPERTIES OF MANY-PARTICLE SPECTRA .5. FLUCTUATIONS AND SYMMETRIES [J].
FRENCH, JB ;
KOTA, VKB ;
PANDEY, A ;
TOMSOVIC, S .
ANNALS OF PHYSICS, 1988, 181 (02) :198-234