The persistence of synchronization under environmental noise

被引:42
作者
Caraballo, T
Kloeden, PE
机构
[1] Univ Sevilla, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[2] Univ Frankfurt, Fachbereich Math, D-60054 Frankfurt, Germany
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2005年 / 461卷 / 2059期
关键词
synchronization; additive noise; random attractor; stationary stochastic process; one-sided Lipschitz dissipative condition;
D O I
10.1098/rspa.2005.1484
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is shown that the synchronization of dissipative systems persists when they are disturbed by additive noise, no matter how large the intensity of the noise, provided asymptotically stable stationary-stochastic solutions are used instead of asymptotically stable equilibria.
引用
收藏
页码:2257 / 2267
页数:11
相关论文
共 8 条
[1]  
AFRAIMOVICH VS, 1998, INT C DIFF EQ LISB 1, P3
[2]   Upper semicontinuity of attractors and synchronization [J].
Carvalho, AN ;
Rodrigues, HM ;
Dlotko, T .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 220 (01) :13-41
[3]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[4]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[5]   Towards a theory of random numerical dynamics [J].
Kloeden, PE ;
Keller, H ;
Schmalfuss, B .
STOCHASTIC DYNAMICS, 1999, :259-282
[6]   Stability of random attractors under perturbation and approximation [J].
Robinson, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (02) :652-669
[7]  
Rodrigues H. M., 1996, APPL ANAL, V62, P263
[8]  
[No title captured]