Bottom-up Object Detection by Grouping Extreme and Center Points

被引:754
作者
Zhou, Xingyi [1 ]
Zhuo, Jiacheng [1 ]
Krahenbuhl, Philipp [1 ]
机构
[1] UT Austin, Austin, TX 78712 USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advent of deep learning, object detection drifted from a bottom-up to a top-down recognition problem. State of the art algorithms enumerate a near-exhaustive list of object locations and classify each into: object or not. In this paper, we show that bottom-up approaches still perform competitively. We detect four extreme points (top-most, left-most, bottom-most, right-most) and one center point of objects using a standard keypoint estimation network. We group the five keypoints into a bounding box if they are geometrically aligned. Object detection is then a purely appearance-based keypoint estimation problem, without region classification or implicit feature learning. The proposed method performs on-par with the state-of-the-art region based detection methods, with a bounding box AP of 43.7% on COCO test-dev. In addition, our estimated extreme points directly span a coarse octagonal mask, with a COCO Mask AP of 18.9%, much better than the Mask AP of vanilla bounding boxes. Extreme point guided segmentation further improves this to 34.6% Mask AP.
引用
收藏
页码:850 / 859
页数:10
相关论文
共 52 条
[11]  
Fu C., 2017, ARXIV, P1
[12]  
Girshick R., 2015, P IEEE INT C COMPUTE, DOI [DOI 10.1109/ICCV.2015.169, 10.1109/ICCV.2015.169]
[13]  
Girshick R., 2014, IEEE COMP SOC C COMP, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81]
[14]  
Girshick R. B., 2011, ADV NEURAL INF PROCE, P442
[15]  
Hariharan B, 2011, IEEE I CONF COMP VIS, P991, DOI 10.1109/ICCV.2011.6126343
[16]  
He K., 2016, CVPR, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
[17]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[18]   Learning non-maximum suppression [J].
Hosang, Jan ;
Benenson, Rodrigo ;
Schiele, Bernt .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6469-6477
[19]  
Huang J., 2017, CVPR, DOI DOI 10.1109/CVPR.2017.351
[20]   Acquisition of Localization Confidence for Accurate Object Detection [J].
Jiang, Borui ;
Luo, Ruixuan ;
Mao, Jiayuan ;
Xiao, Tete ;
Jiang, Yuning .
COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 :816-832