Bottom-up Object Detection by Grouping Extreme and Center Points

被引:754
作者
Zhou, Xingyi [1 ]
Zhuo, Jiacheng [1 ]
Krahenbuhl, Philipp [1 ]
机构
[1] UT Austin, Austin, TX 78712 USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advent of deep learning, object detection drifted from a bottom-up to a top-down recognition problem. State of the art algorithms enumerate a near-exhaustive list of object locations and classify each into: object or not. In this paper, we show that bottom-up approaches still perform competitively. We detect four extreme points (top-most, left-most, bottom-most, right-most) and one center point of objects using a standard keypoint estimation network. We group the five keypoints into a bounding box if they are geometrically aligned. Object detection is then a purely appearance-based keypoint estimation problem, without region classification or implicit feature learning. The proposed method performs on-par with the state-of-the-art region based detection methods, with a bounding box AP of 43.7% on COCO test-dev. In addition, our estimated extreme points directly span a coarse octagonal mask, with a COCO Mask AP of 18.9%, much better than the Mask AP of vanilla bounding boxes. Extreme point guided segmentation further improves this to 34.6% Mask AP.
引用
收藏
页码:850 / 859
页数:10
相关论文
共 52 条
[1]  
[Anonymous], 2014, ECCV
[2]  
[Anonymous], 2017, ARXIV170310295
[3]   Soft-NMS - Improving Object Detection With One Line of Code [J].
Bodla, Navaneeth ;
Singh, Bharat ;
Chellappa, Rama ;
Davis, Larry S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5562-5570
[4]   Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields [J].
Cao, Zhe ;
Simon, Tomas ;
Wei, Shih-En ;
Sheikh, Yaser .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1302-1310
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   Blazingly Fast Video Object Segmentation with Pixel-Wise Metric Learning [J].
Chen, Yuhua ;
Pont-Tuset, Jordi ;
Montes, Alberto ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1189-1198
[7]  
Dai J., 2016, ADV NEURAL INFORM PR, P379, DOI DOI 10.1109/CVPR.2017.690
[8]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[9]  
Everingham M., The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
[10]  
Felzenszwalb P. F., 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence, V32, P1627, DOI [10.1109/TPAMI.2009.167, DOI 10.1109/TPAMI.2009.167]