Data Augmentation for Graph Classification

被引:26
作者
Zhou, Jiajun [1 ]
Shen, Jie [1 ]
Xuan, Qi [1 ]
机构
[1] Zhejiang Univ Technol, Hangzhou, Peoples R China
来源
CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT | 2020年
基金
中国国家自然科学基金;
关键词
Graph Classification; Data Augmentation; Model Evolution;
D O I
10.1145/3340531.3412086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph classification, which aims to identify the category labels of graphs, plays a significant role in drug classification, toxicity detection, protein analysis etc. However, the limitation of scale of benchmark datasets makes it easy for graph classification models to fall into over-fitting and undergeneralization. Towards this, we introduce data augmentation on graphs and present two heuristic algorithms: random mapping and motif-similarity mapping, to generate more weakly labeled data for small-scale benchmark datasets via heuristic modification of graph structures. Furthermore, we propose a generic model evolution framework, named M-Evolve, which combines graph augmentation, data filtration and model retraining to optimize pre-trained graph classifiers. Experiments conducted on six benchmark datasets demonstrate that M-Evolve helps existing graph classification models alleviate over-fitting when training on small-scale benchmark datasets and yields an average improvement of 3-12% accuracy on graph classification tasks.
引用
收藏
页码:2341 / 2344
页数:4
相关论文
共 10 条
[1]   Protein function prediction via graph kernels [J].
Borgwardt, KM ;
Ong, CS ;
Schönauer, S ;
Vishwanathan, SVN ;
Smola, AJ ;
Kriegel, HP .
BIOINFORMATICS, 2005, 21 :I47-I56
[2]  
de Lara Nathan, 2018, ARXIV181009155
[3]  
Duvenaudt D, 2015, ADV NEUR IN, V28
[4]  
Kersting K., 2016, Benchmark data sets for graph kernels
[5]  
Narayanan A., 2017, arXiv
[6]   NetLSD: Hearing the Shape of a Graph [J].
Tsitsulin, Anton ;
Mottin, Davide ;
Karras, Panagiotis ;
Bronstein, Alex ;
Mueller, Emmanuel .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :2347-2356
[7]   gl2vec: Learning Feature Representation Using Graphlets for Directed Networks [J].
Tu, Kun ;
Li, Jian ;
Towsley, Don ;
Braines, Dave ;
Turner, Liam D. .
PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019), 2019, :216-221
[8]   Deep Graph Kernels [J].
Yanardag, Pinar ;
Vishwanathan, S. V. N. .
KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, :1365-1374
[9]  
Ying R, 2018, ADV NEUR IN, V31
[10]   Predicting missing links via local information [J].
Zhou, Tao ;
Lu, Linyuan ;
Zhang, Yi-Cheng .
EUROPEAN PHYSICAL JOURNAL B, 2009, 71 (04) :623-630