Stable pure state quantum tomography from five orthonormal bases

被引:24
作者
Carmeli, Claudio [1 ]
Heinosaari, Teiko [2 ]
Kech, Michael [3 ]
Schultz, Jussi [2 ]
Toigo, Alessandro [4 ,5 ]
机构
[1] Univ Genoa, DIME, Via Magliotto 2, I-17100 Savona, Italy
[2] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, FI-20014 Turku, Finland
[3] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
[4] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[5] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
关键词
D O I
10.1209/0295-5075/115/30001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For any finite-dimensional Hilbert space, we construct explicitly five orthonormal bases such that the corresponding measurements allow for efficient tomography of an arbitrary pure quantum state. This means that such measurements can be used to distinguish an arbitrary pure state from any other state, pure or mixed, and the pure state can be reconstructed from the outcome distribution in a feasible way. The set of measurements we construct is independent of the unknown state, and therefore our results provide a fixed scheme for pure state tomography, as opposed to the adaptive (state-dependent) scheme proposed by Goyeneche et al. (Phys. Rev. Lett., 115 (2015) 090401). We show that our scheme is robust with respect to noise, in the sense that any measurement scheme which approximates these measurements well enough is equally suitable for pure state tomography. Finally, we present two convex programs which can be used to reconstruct the unknown pure state from the measurement outcome distributions. Copyright (C) EPLA, 2016
引用
收藏
页数:6
相关论文
共 21 条
[1]   Strictly-complete measurements for bounded-rank quantum-state tomography [J].
Baldwin, Charles H. ;
Deutsch, Ivan H. ;
Kalev, Amir .
PHYSICAL REVIEW A, 2016, 93 (05)
[2]  
Bhatia Rajendra, 1997, Matrix Analysis: Graduate Texts in Mathematics, V169
[3]   How many orthonormal bases are needed to distinguish all pure quantum states? [J].
Carmeli, Claudio ;
Heinosaari, Teiko ;
Schultz, Jussi ;
Toigo, Alessandro .
EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (07)
[4]   Tasks and premises in quantum state determination [J].
Carmeli, Claudio ;
Heinosaari, Teiko ;
Schultz, Jussi ;
Toigo, Alessandro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (07)
[5]   Uniqueness of quantum states compatible with given measurement results [J].
Chen, Jianxin ;
Dawkins, Hillary ;
Ji, Zhengfeng ;
Johnston, Nathaniel ;
Kribs, David ;
Shultz, Frederic ;
Zeng, Bei .
PHYSICAL REVIEW A, 2013, 88 (01)
[6]   Five Measurement Bases Determine Pure Quantum States on Any Dimension [J].
Goyeneche, D. ;
Canas, G. ;
Etcheverry, S. ;
Gomez, E. S. ;
Xavier, G. B. ;
Lima, G. ;
Delgado, A. .
PHYSICAL REVIEW LETTERS, 2015, 115 (09)
[7]   Recovering Low-Rank Matrices From Few Coefficients in Any Basis [J].
Gross, David .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (03) :1548-1566
[8]   Quantum State Tomography via Compressed Sensing [J].
Gross, David ;
Liu, Yi-Kai ;
Flammia, Steven T. ;
Becker, Stephen ;
Eisert, Jens .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[9]  
Heinosaari T., 2012, The Mathematical Language of Quantum Theory
[10]   Quantum Tomography under Prior Information [J].
Heinosaari, Teiko ;
Mazzarella, Luca ;
Wolf, Michael M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (02) :355-374