Engineering carbon fixation in E. coil: from heterologous RuBisCO expression to the Calvin-Benson-Bassham cycle

被引:39
作者
Antonovsky, Niv [1 ]
Gleizer, Shmuel [1 ]
Milo, Ron [1 ]
机构
[1] Weizmann Inst Sci, Dept Plant & Environm Sci, Rehovot, Israel
基金
欧洲研究理事会; 以色列科学基金会;
关键词
RIBULOSE-BISPHOSPHATE CARBOXYLASE; ESCHERICHIA-COLI; RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE; DIRECTED EVOLUTION; FORM-II; PHOTOSYNTHESIS; CO2; SELECTION; 1,5-BISPHOSPHATE; PROTEINS;
D O I
10.1016/j.copbio.2017.06.006
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Carbon fixation is the gateway of inorganic carbon into the biosphere. Our ability to engineer carbon fixation pathways in living organisms is expected to play a crucial role in the quest towards agricultural and energetic sustainability. Recent successes to introduce non-native carbon fixation pathways into heterotrophic hosts offer novel platforms for manipulating these pathways in genetically malleable organisms. Here, we focus on past efforts and future directions for engineering the dominant carbon fixation pathway in the biosphere, the Calvin-Benson cycle, into the well-known model organism Escherichia coil. We describe how central carbon metabolism of this heterotrophic bacterium can be manipulated to allow directed evolution of carbon fixing enzymes. Finally, we highlight future directions towards synthetic autotrophy.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 67 条
[1]   What have we learned from 15 years of free-air CO2 enrichment (FACE)?: A meta-analytic review of the responses of photosynthesis, canopy [J].
Ainsworth, EA ;
Long, SP .
NEW PHYTOLOGIST, 2005, 165 (02) :351-371
[2]   Structure and function of Rubisco [J].
Andersson, Inger ;
Backlund, Anders .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (03) :275-291
[3]   Sugar Synthesis from CO2 in Escherichia coli [J].
Antonovsky, Niv ;
Gleizer, Shmuel ;
Noor, Elad ;
Zohar, Yehudit ;
Herz, Elad ;
Barenholz, Uri ;
Zelcbuch, Lior ;
Amram, Shira ;
Wides, Aryeh ;
Tepper, Naama ;
Davidi, Dan ;
Bar-On, Yinon ;
Bareia, Tasneem ;
Wernick, David G. ;
Shani, Ido ;
Malitsky, Sergey ;
Jona, Ghil ;
Bar-Even, Arren ;
Milo, Ron .
CELL, 2016, 166 (01) :115-125
[4]   Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes [J].
Bar-Even, Arren ;
Noor, Elad ;
Flamholz, Avi ;
Milo, Ron .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (8-9) :1039-1047
[5]   A survey of carbon fixation pathways through a quantitative lens [J].
Bar-Even, Arren ;
Noor, Elad ;
Milo, Ron .
JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (06) :2325-2342
[6]   Design and analysis of synthetic carbon fixation pathways [J].
Bar-Even, Arren ;
Noor, Elad ;
Lewis, Nathan E. ;
Milo, Ron .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (19) :8889-8894
[7]   Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points [J].
Barenholz, Uri ;
Davidi, Dan ;
Reznik, Ed ;
Bar-On, Yinon ;
Antonovsky, Niv ;
Noor, Elad ;
Milo, Ron .
ELIFE, 2017, 6
[8]   Autotrophic carbon fixation in archaea [J].
Berg, Ivan A. ;
Kockelkorn, Daniel ;
Ramos-Vera, W. Hugo ;
Say, Rafael F. ;
Zarzycki, Jan ;
Huegler, Michael ;
Alber, Birgit E. ;
Fuchs, Georg .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (06) :447-460
[9]   Metabolic engineering of Escherichia coli:: Increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase [J].
Berríos-Rivera, SJ ;
Bennett, GN ;
San, KY .
METABOLIC ENGINEERING, 2002, 4 (03) :217-229
[10]  
Bracher Andreas, 2017, ANNU REV PLANT BIOL, P68