Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data

被引:49
作者
Zuo, Chunman [1 ]
Dai, Hao [1 ]
Chen, Luonan [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Ctr Excellence Mol Cell Sci, Shanghai Inst Biochem & Cell Biol, State Key Lab Cell Biol, Shanghai 200031, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Hlth Sci Zhejiang Prov, Hangzhou 310024, Peoples R China
[3] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
[4] Pazhou Lab, Guangzhou 510330, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 日本科学技术振兴机构;
关键词
TRANSCRIPTION FACTORS; NETWORK;
D O I
10.1093/bioinformatics/btab403
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Joint profiling of single-cell transcriptomics and epigenomics data enables us to characterize cell states and transcriptomics regulatory programs related to cellular heterogeneity. However, the highly different features on sparsity, heterogeneity and dimensionality between multi-omics data have severely hindered its integrative analysis. Results: We proposed deep cross-omics cycle attention (DCCA) model, a computational tool for joint analysis of single-cell multi-omics data, by combining variational autoencoders (VAEs) and attention-transfer. Specifically, we show that DCCA can leverage one omics data to fine-tune the network trained for another omics data, given a dataset of parallel multi-omics data within the same cell. Studies on both simulated and real datasets from various platforms, DCCA demonstrates its superior capability: (i) dissecting cellular heterogeneity; (ii) denoising and aggregating data and (iii) constructing the link between multi-omics data, which is used to infer new transcriptional regulatory relations. In our applications, DCCA was demonstrated to have a superior power to generate missing stages or omics in a biologically meaningful manner, which provides a new way to analyze and also understand complicated biological processes.
引用
收藏
页码:4091 / 4099
页数:9
相关论文
共 48 条
[1]  
[Anonymous], 2014, ARXIV14123121
[2]   MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data [J].
Argelaguet, Ricard ;
Arnol, Damien ;
Bredikhin, Danila ;
Deloro, Yonatan ;
Velten, Britta ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2020, 21 (01)
[3]   Classifying cells with Scasat, a single-cell ATAC-seq analysis tool [J].
Baker, Syed Murtuza ;
Rogerson, Connor ;
Hayes, Andrew ;
Sharrocks, Andrew D. ;
Rattray, Magnus .
NUCLEIC ACIDS RESEARCH, 2019, 47 (02)
[4]   Multimodal Machine Learning: A Survey and Taxonomy [J].
Baltrusaitis, Tadas ;
Ahuja, Chaitanya ;
Morency, Louis-Philippe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) :423-443
[5]   Single-Cell (Multi)omics Technologies [J].
Chappell, Lia ;
Russell, Andrew J. C. ;
Voet, Thierry .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 19, 2018, 19 :15-41
[6]   Predicting future dynamics from short-term time series using an Anticipated Learning Machine [J].
Chen, Chuan ;
Li, Rui ;
Shu, Lin ;
He, Zhiyu ;
Wang, Jining ;
Zhang, Chengming ;
Ma, Huanfei ;
Aihara, Kazuyuki ;
Chen, Luonan .
NATIONAL SCIENCE REVIEW, 2020, 7 (06) :1079-1091
[7]   Assessment of computational methods for the analysis of single-cell ATAC-seq data [J].
Chen, Huidong ;
Lareau, Caleb A. ;
Andreani, Tommaso ;
Vinyard, Michael E. ;
Garcia, Sara P. ;
Clement, Kendell ;
Andrade-Navarro, Miguel ;
Buenrostro, Jason D. ;
Pinello, Luca .
GENOME BIOLOGY, 2019, 20 (01)
[8]   Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation [J].
Chen, Pei ;
Liu, Rui ;
Aihara, Kazuyuki ;
Chen, Luonan .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell [J].
Chen, Song ;
Lake, Blue B. ;
Zhang, Kun .
NATURE BIOTECHNOLOGY, 2019, 37 (12) :1452-+
[10]   scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells [J].
Clark, Stephen J. ;
Argelaguet, Ricard ;
Kapourani, Chantriolnt-Andreas ;
Stubbs, Thomas M. ;
Lee, Heather J. ;
Alda-Catalinas, Celia ;
Krueger, Felix ;
Sanguinetti, Guido ;
Kelsey, Gavin ;
Marioni, John C. ;
Stegle, Oliver ;
Reik, Wolf .
NATURE COMMUNICATIONS, 2018, 9