GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy

被引:72
作者
Han, Mingyue [1 ]
Yang, Zhi [1 ]
Sayed, Danish [1 ]
He, Minzhen [1 ]
Gao, Shumin [1 ]
Lin, Lin [1 ]
Yoon, Seonghun [1 ]
Abdellatif, Maha [1 ]
机构
[1] Univ Med & Dent New Jersey, Dept Cell Biol & Mol Med, Cardiovasc Res Inst, Newark, NJ 07103 USA
基金
美国国家卫生研究院;
关键词
miR-26; GATA4; Hypertrophy; Phospholipase C-; GENE-EXPRESSION; TRANSCRIPTION FACTOR; MICRORNA; DISEASE; MORPHOGENESIS; MYOCYTES; TARGETS; PROTEIN; GROWTH; RAS;
D O I
10.1093/cvr/cvs001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
GATA4 is a transcription factor that is up-regulated during cardiac hypertrophy and plays a fundamental role in myocyte growth and survival. In this study, we investigate the transcriptional vs. post-transcriptional mechanisms that are involved in regulating GATA4 in the heart during neonatal and pressure overload-induced hypertrophic growth. GATA4 protein is significantly higher during pressure overload-induced (2.9 0.4-fold) and neonatal (6.8 1-fold) hypertrophic growth vs. the normal adult mouse heart. Using RNA polymerase II immunoprecipitation combined with deep sequencing, we confirmed that active transcription of the Gata4 gene remained unchanged during hypertrophy, whereas it was two-fold higher in the neonatal vs. adult heart, commensurate with the mRNA levels. These results suggested a post-transcriptional mode of regulation of its expression, which prompted the identification of a conserved sequence in its 3-untranslated region that was responsible for reduced translation via miR-26b. Overexpression of miR-26b reduced GATA4-dependent transcription, endothelin-induced hypertrophy, and sensitized the cells to apoptotic insults. Additionally, miR-26b targeted phospholipase C-1, which, in turn, inhibited miR-26b expression, creating a double-negative feedback loop. Accordingly, overexpression of miR-26b in the heart inhibited up-regulation of its targets and the development of hypertrophy. However, knockdown of miR-26b is not sufficient for inducing hypertrophy. Down-regulation of miR-26b in the heart is required for the up-regulation of GATA4 and the induction of pressure-induced cardiac hypertrophy. The results also underscore the functional relevance of miRNAs in regulating gene expression during cardiac hypertrophy.
引用
收藏
页码:645 / 654
页数:10
相关论文
共 26 条
[1]  
ABDELLATIF M, 1994, J BIOL CHEM, V269, P15423
[2]   A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: Implications for cardiac hypertrophy [J].
Abdellatif, M ;
Packer, SE ;
Michael, LH ;
Zhang, D ;
Charng, MJ ;
Schneider, MD .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6729-6736
[3]   Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy - Role of M-CAT element within the promoter [J].
Aihara, Y ;
Kurabayashi, M ;
Saito, Y ;
Ohyama, Y ;
Tanaka, T ;
Takeda, S ;
Tomaru, K ;
Sekiguchi, K ;
Arai, M ;
Nakamura, T ;
Nagai, R .
HYPERTENSION, 2000, 36 (01) :48-53
[4]   Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators [J].
Belaguli, NS ;
Sepulveda, JL ;
Nigam, V ;
Charron, F ;
Nemer, M ;
Schwartz, RJ .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (20) :7550-7558
[5]   C/EBPβ Controls Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling [J].
Bostroem, Pontus ;
Mann, Nina ;
Wu, Jun ;
Quintero, Pablo A. ;
Plovie, Eva R. ;
Panakova, Daniela ;
Gupta, Rana K. ;
Xiao, Chunyang ;
MacRae, Calum A. ;
Rosenzweig, Anthony ;
Spiegelman, Bruce M. .
CELL, 2010, 143 (07) :1072-1083
[6]   MUSCLE AND NON-MUSCLE CELL RNA-POLYMERASE ACTIVITY DURING DEVELOPMENT OF MYOCARDIAL HYPERTROPHY [J].
CUTILLETTA, AF ;
RUDNIK, M ;
ZAK, R .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1978, 10 (08) :677-687
[7]   Gene Expression Omnibus: NCBI gene expression and hybridization array data repository [J].
Edgar, R ;
Domrachev, M ;
Lash, AE .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :207-210
[8]  
GRAHAM FL, 1991, METHODS MOL BIOL
[9]  
Hautala N, 2001, CIRCULATION, V103, P730
[10]  
KAMALA J, 1986, BIOCHEM INT, V13, P271