Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion

被引:355
|
作者
Xie, Ying Peng [1 ]
Liu, Gang [1 ]
Yin, Lichang [1 ]
Cheng, Hui-Ming [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
关键词
HYDROGEN-PRODUCTION; TIO2; WATER; NANOCRYSTALS;
D O I
10.1039/c2jm16178h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reactivity of a photocatalyst is basically influenced by its surface atomic and linked electronic structure. Tuning different crystal facets is becoming an important strategy to optimize the reactivity of a photocatalyst for targeted reactions. Here we report a facile and new route of synthesizing a quasi-cubic-like WO3 crystal with a nearly equal percentage of {002}, {200} and {020} facets, and a rectangular sheet-like WO3 crystal with predominant {002} facet by controlling acidic hydrolysis of crystalline WB. As a result of electronic structure effects induced by crystal facet, the quasi-cubic-like WO3 crystal with a deeper valence band maximum shows a much higher O-2 evolution rate in photocatalytic water oxidation than the rectangular sheet-like WO3 crystal. The latter, with an elevated conduction band minimum of 0.3 eV, is able to photoreduce CO2 to generate CH4 in the presence of H2O vapor.
引用
收藏
页码:6746 / 6751
页数:6
相关论文
共 39 条
  • [1] Interfacial crystal facet-dependent charge separation of WO3/BiVO4 heterojunction photoanodes
    Liu, Canjun
    Zhang, Jie
    Chen, Linmei
    Wang, Keke
    Chen, Hezhang
    Chen, Shu
    Pei, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1017
  • [2] TiO2 crystal facet-dependent antimony adsorption and photocatalytic oxidation
    Song, Jiaying
    Yan, Li
    Duan, Jinming
    Jing, Chuanyong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 496 : 522 - 530
  • [3] Crystal facet-dependent activity of h-WO3 for selective conversion of furfuryl alcohol to ethyl levulinate
    Gao, Guoming
    Lv, Mingxuan
    Shao, Yuewen
    Gao, Guanggang
    Zhao, Hui
    Zhang, Shu
    Wang, Yi
    Duan, Ran
    Chen, Qifeng
    Hu, Xun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (46) : 26923 - 26934
  • [4] Facet-Dependent Performance of Microstructured SrTiO3 Particles in Photocatalytic Oxidation of Acetone
    Costa, Nathalia Tavares
    Cunha, Daniel Monteiro
    Zhu, Kaijian
    Huijser, Annemarie
    Katsoukis, Georgios
    Wenderich, Kasper
    Flapper, Jitte
    Mul, Guido
    ENERGY & ENVIRONMENTAL MATERIALS, 2025,
  • [5] Solar energy conversion with atomic layer deposition grown WO3
    Sheehan, Stafford W.
    Lin, Yongjing
    Liu, Xiaohua
    Wang, Dunwei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [6] Enhanced Photocatalytic Benzene Oxidation to Phenol over Monoclinic WO3 Nanorods under Visible Light
    Wang, Ziru
    Zhu, Chen
    Ni, Zitao
    Hojo, Hajime
    Einaga, Hisahiro
    ACS CATALYSIS, 2022, 12 (24) : 14976 - 14989
  • [7] Crystal facet-dependent reduction behavior of α-Fe2O3 in hydrogen atmosphere
    Han, Yujing
    Wang, Huixiang
    Huang, Dongmei
    Wang, Pengfei
    Zhang, Jianli
    Ren, Xiaobo
    Meng, Yu
    Lv, Baoliang
    APPLIED SURFACE SCIENCE, 2023, 638
  • [8] Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion
    Cheng, Li
    Men, Yong
    Wang, Jinguo
    Wang, Hao
    An, Wei
    Wang, Yuanqiang
    Duan, Zhichen
    Liu, Jian
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 204 : 374 - 384
  • [9] Crystal facet-dependent frustrated Lewis pairs on dual-metal hydroxide for photocatalytic CO2 reduction
    Zhang, Weining
    Yang, Zhenhua
    Wang, Hailian
    Lu, Lei
    Liu, Depei
    Li, Taozhu
    Yan, Shicheng
    Qin, Hao
    Yu, Tao
    Zou, Zhigang
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 300
  • [10] Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods
    Sonya Kosar
    Yuriy Pihosh
    Raman Bekarevich
    Kazutaka Mitsuishi
    Kazuma Mawatari
    Yutaka Kazoe
    Takehiko Kitamori
    Masahiro Tosa
    Alexey B. Tarasov
    Eugene A. Goodilin
    Yaroslav M. Struk
    Michio Kondo
    Ivan Turkevych
    Applied Nanoscience, 2019, 9 : 1017 - 1024