Escaping points of meromorphic functions with a finite number of poles

被引:21
作者
Rippon, PJ [1 ]
Stallard, GM [1 ]
机构
[1] Open Univ, Dept Pure Math, Milton Keynes MK7 6AA, Bucks, England
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2005年 / 96卷 / 1期
关键词
D O I
10.1007/BF02787829
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish several new properties of the escaping set I(f) = {z : f(n) (z) -> infinity and f(n) (z) not equal infinity for each n is an element of N} of a transcendental meromorphic function f with a finite number of poles. By considering a subset of 1(f) where the iterates escape about as fast as possible, we show that I(f) always contains at least one unbounded component. Also, if f has no Baker wandering domains, then the set I(f) boolean AND J(f), where J(f) is the Julia set of f, has at least one unbounded component. These results are false for transcendental meromorphic functions with infinitely many poles.
引用
收藏
页码:225 / 245
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 1995, Analysis, DOI DOI 10.1524/ANLY.1995.15.3.251
[2]  
Baker I. N., 1976, J AUSTRAL MATH SOC A, V22, P173
[3]  
Baker I. N., 1963, MATH Z, V81, P206
[4]  
BAKER IN, 1984, P LOND MATH SOC, V49, P563
[5]   ITERATES OF MEROMORPHIC FUNCTIONS .1. [J].
BAKER, IN ;
KOTUS, J ;
LU, YN .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :241-248
[6]   On semiconjugation of entire functions [J].
Bergweiler, W ;
Hinkkanen, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 :565-574
[7]   INVARIANT DOMAINS AND SINGULARITIES [J].
BERGWEILER, W .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 117 :525-532
[8]   ITERATION OF MEROMORPHIC FUNCTIONS [J].
BERGWEILER, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :151-188
[9]  
Collingwood E. F., 1966, THEORY CLUSTER SETS
[10]  
Dominguez P, 1998, ANN ACAD SCI FENN-M, V23, P225