Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design

被引:126
作者
Lochbaum, Alexander [1 ]
Dorodnyy, Alexander [1 ]
Koch, Ueli [1 ]
Koepfli, Stefan M. [1 ]
Volk, Sebastian [2 ]
Fedoryshyn, Yuriy [1 ]
Wood, Vanessa [2 ]
Leuthold, Juerg [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Electromagnet Fields IEF, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Mat & Device Engn MaDE Grp, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Optical gas sensing; mid-infrared photonics; metamaterials; electronic photonic cointegration; thermal emission engineering; BAND THERMAL EMISSION; PERFECT ABSORBER; MAGNETIC RESPONSE; BROAD-BAND; SPECTROSCOPY;
D O I
10.1021/acs.nanolett.0c00483
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The miniaturization of mid-infrared optical gas sensors has great potential to make the "fingerprint region" between 2 and 10 mu m accessible to a variety of cost-sensitive applications ranging from medical technology to atmospheric sensing. Here we demonstrate a gas sensor concept that achieves a 30-fold reduction in absorption volume compared to conventional gas sensors by using plasmonic metamaterials as on-chip optical filters. Integrating metamaterials into both the emitter and the detector cascades their individual filter functions, yielding a narrowband spectral response tailored to the absorption band of interest, here CO2. Simultaneously, the metamaterials' angle-independence is maintained, enabling an optically efficient, millimeter-scale cavity. With a CO2 sensitivity of 22.4 +/- 0.5 ppm.Hz(-0.5), the electrically driven prototype already performs at par with much larger commercial devices while consuming 80% less energy per measurement. The all-metamaterial sensing concept offers a path toward more compact and energy-efficient mid-infrared gas sensors without trade-offs in sensitivity or robustness.
引用
收藏
页码:4169 / 4176
页数:8
相关论文
共 49 条
[1]   Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors [J].
Ackerman, Matthew M. ;
Tang, Xin ;
Guyot-Sionnest, Philippe .
ACS NANO, 2018, 12 (07) :7264-7271
[2]   A Low-Power, Low-Cost Infra-Red Emitter in CMOS Technology [J].
Ali, Syed Zeeshan ;
De Luca, Andrea ;
Hopper, Richard ;
Boual, Sophie ;
Gardner, Julian ;
Udrea, Florin .
IEEE SENSORS JOURNAL, 2015, 15 (12) :6775-6782
[3]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[4]  
Banwell C., 1994, Fundamentals for Molecular Spectroscopy, Vfourth
[5]   Nanophotonic engineering of far-field thermal emitters [J].
Baranov, Denis G. ;
Xiao, Yuzhe ;
Nechepurenko, Igor A. ;
Krasnok, Alex ;
Alu, Andrea ;
Kats, Mikhail A. .
NATURE MATERIALS, 2019, 18 (09) :920-930
[6]   Cavity-enhanced dual-comb spectroscopy [J].
Bernhardt, Birgitta ;
Ozawa, Akira ;
Jacquet, Patrick ;
Jacquey, Marion ;
Kobayashi, Yohei ;
Udem, Thomas ;
Holzwarth, Ronald ;
Guelachvili, Guy ;
Haensch, Theodor W. ;
Picque, Nathalie .
NATURE PHOTONICS, 2010, 4 (01) :55-57
[7]   Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy [J].
Chen, Kai ;
Adato, Ronen ;
Altug, Hatice .
ACS NANO, 2012, 6 (09) :7998-8006
[8]  
Coddington I, 2016, OPTICA, V3, P414, DOI [10.1364/optica.3.000414, 10.1364/OPTICA.3.000414]
[9]   Conversion of broadband to narrowband thermal emission through energy recycling [J].
De Zoysa, Menaka ;
Asano, Takashi ;
Mochizuki, Keita ;
Oskooi, Ardavan ;
Inoue, Takuya ;
Noda, Susumu .
NATURE PHOTONICS, 2012, 6 (08) :535-539
[10]   Coherent emission of light by thermal sources [J].
Greffet, JJ ;
Carminati, R ;
Joulain, K ;
Mulet, JP ;
Mainguy, SP ;
Chen, Y .
NATURE, 2002, 416 (6876) :61-64