PyPhotonics: A python']python package for the evaluation of luminescence properties of defects

被引:10
作者
Tawfik, Sherif Abdulkader [1 ,2 ]
Russo, Salvy P. [2 ,3 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[2] RMIT Univ, ARC Ctr Excellence Exciton Sci, Sch Sci, Melbourne, Vic 3001, Australia
[3] RMIT Univ, Sch Sci, Chem & Quantum Phys, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会;
关键词
Quantum emission; Defects; Densityfunctional theory; VIBRONIC BAND; ELECTRON;
D O I
10.1016/j.cpc.2021.108222
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The prediction of the photoluminescence line-shape of defect systems from first principles is becoming an important tool for the discovery of quantum emission defects in semiconductors. Using a sequence of density functional theory calculations based on the VASP code, PyPhotonics calculates the Huang-Rhys factor and plots the photoluminescence line-shape of the defect by processing the VASP output. Program summary Program title: PyPhotonics CPC Library link to program files: https://doi.org/10.17632/vy4ccz4hxz.1 Developer's repositorylink: https://github.com/sheriftawfikabbas/pyphotonics Licensing provisions: GNU General Public License 3 Programming language: Python 3.9 Nature of problem: While density functional theory (DFT) codes can calculate properties of crystal defects, there are no available codes to calculate the photoluminescence line-shape and the Huang-Rhys factors for the defects computed using DFT. Solution method: The PyPhotonics python code is a post-processing library written entirely in python, which takes as input the output files of the VASP and phonopy codes for a defect system, and calculates the Huang-Rhys factor and the PL lineshapes for that system. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 18 条
  • [1] First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres
    Alkauskas, Audrius
    Buckley, Bob B.
    Awschalom, David D.
    Van de Walle, Chris G.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [2] THE 1018 MEV (W OR I1) VIBRONIC BAND IN SILICON
    DAVIES, G
    LIGHTOWLERS, EC
    CIECHANOWSKA, ZE
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (02): : 191 - 205
  • [4] DAVIES G, 1981, J PHYS C SOLID STATE, V14, P4153, DOI 10.1088/0022-3719/14/28/016
  • [5] First-principles calculations for point defects in solids
    Freysoldt, Christoph
    Grabowski, Blazej
    Hickel, Tilmann
    Neugebauer, Joerg
    Kresse, Georg
    Janotti, Anderson
    Van de Walle, Chris G.
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (01) : 253 - 305
  • [6] Fully Ab Initio Finite-Size Corrections for Charged-Defect Supercell Calculations
    Freysoldt, Christoph
    Neugebauer, Joerg
    Van de Walle, Chris G.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (01)
  • [7] Photoluminescence line shapes for color centers in silicon carbide from density functional theory calculations
    Hashemi, Arsalan
    Linderalv, Christopher
    Krasheninnikov, Arkady, V
    Ala-Nissila, Tapio
    Erhart, Paul
    Komsa, Hannu-Pekka
    [J]. PHYSICAL REVIEW B, 2021, 103 (12)
  • [8] THEORY OF LIGHT ABSORPTION AND NON-RADIATIVE TRANSITIONS IN F-CENTRES
    HUANG, K
    RHYS, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1950, 204 (1078): : 406 - 423
  • [9] SHAPES OF IMPURITY ABSORPTION BANDS IN SOLIDS
    KEIL, TH
    [J]. PHYSICAL REVIEW, 1965, 140 (2A): : A601 - &
  • [10] Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) : 15 - 50