PyPhotonics: A python']python package for the evaluation of luminescence properties of defects

被引:13
作者
Tawfik, Sherif Abdulkader [1 ,2 ]
Russo, Salvy P. [2 ,3 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[2] RMIT Univ, ARC Ctr Excellence Exciton Sci, Sch Sci, Melbourne, Vic 3001, Australia
[3] RMIT Univ, Sch Sci, Chem & Quantum Phys, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会;
关键词
Quantum emission; Defects; Densityfunctional theory; VIBRONIC BAND; ELECTRON;
D O I
10.1016/j.cpc.2021.108222
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The prediction of the photoluminescence line-shape of defect systems from first principles is becoming an important tool for the discovery of quantum emission defects in semiconductors. Using a sequence of density functional theory calculations based on the VASP code, PyPhotonics calculates the Huang-Rhys factor and plots the photoluminescence line-shape of the defect by processing the VASP output. Program summary Program title: PyPhotonics CPC Library link to program files: https://doi.org/10.17632/vy4ccz4hxz.1 Developer's repositorylink: https://github.com/sheriftawfikabbas/pyphotonics Licensing provisions: GNU General Public License 3 Programming language: Python 3.9 Nature of problem: While density functional theory (DFT) codes can calculate properties of crystal defects, there are no available codes to calculate the photoluminescence line-shape and the Huang-Rhys factors for the defects computed using DFT. Solution method: The PyPhotonics python code is a post-processing library written entirely in python, which takes as input the output files of the VASP and phonopy codes for a defect system, and calculates the Huang-Rhys factor and the PL lineshapes for that system. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 18 条
[1]   First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres [J].
Alkauskas, Audrius ;
Buckley, Bob B. ;
Awschalom, David D. ;
Van de Walle, Chris G. .
NEW JOURNAL OF PHYSICS, 2014, 16
[2]   THE 1018 MEV (W OR I1) VIBRONIC BAND IN SILICON [J].
DAVIES, G ;
LIGHTOWLERS, EC ;
CIECHANOWSKA, ZE .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (02) :191-205
[3]   THE JAHN-TELLER EFFECT AND VIBRONIC COUPLING AT DEEP LEVELS IN DIAMOND [J].
DAVIES, G .
REPORTS ON PROGRESS IN PHYSICS, 1981, 44 (07) :787-830
[4]  
DAVIES G, 1981, J PHYS C SOLID STATE, V14, P4153, DOI 10.1088/0022-3719/14/28/016
[5]   First-principles calculations for point defects in solids [J].
Freysoldt, Christoph ;
Grabowski, Blazej ;
Hickel, Tilmann ;
Neugebauer, Joerg ;
Kresse, Georg ;
Janotti, Anderson ;
Van de Walle, Chris G. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :253-305
[6]   Fully Ab Initio Finite-Size Corrections for Charged-Defect Supercell Calculations [J].
Freysoldt, Christoph ;
Neugebauer, Joerg ;
Van de Walle, Chris G. .
PHYSICAL REVIEW LETTERS, 2009, 102 (01)
[7]   Photoluminescence line shapes for color centers in silicon carbide from density functional theory calculations [J].
Hashemi, Arsalan ;
Linderalv, Christopher ;
Krasheninnikov, Arkady, V ;
Ala-Nissila, Tapio ;
Erhart, Paul ;
Komsa, Hannu-Pekka .
PHYSICAL REVIEW B, 2021, 103 (12)
[8]   THEORY OF LIGHT ABSORPTION AND NON-RADIATIVE TRANSITIONS IN F-CENTRES [J].
HUANG, K ;
RHYS, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1950, 204 (1078) :406-423
[9]   SHAPES OF IMPURITY ABSORPTION BANDS IN SOLIDS [J].
KEIL, TH .
PHYSICAL REVIEW, 1965, 140 (2A) :A601-&
[10]   Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) :15-50