Bound states in mildly curved layers

被引:16
|
作者
Exner, P [1 ]
Krejcirík, D
机构
[1] Acad Sci Czech Republ, Inst Nucl Phys, CZ-25068 Prague, Czech Republic
[2] Czech Tech Univ, Doppler Inst, Prague 11519, Czech Republic
[3] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague, Czech Republic
[4] CNRS, Ctr Phys Theor, F-13288 Marseille, France
[5] Univ Toulon & Var, PHYMAT, F-83957 La Garde, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 30期
关键词
D O I
10.1088/0305-4470/34/30/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been shown recently that a nonrelativistic quantum particle constrained to a hard-wall layer of constant width built over a geodesically complete simply connected noncompact curved surface can have bound states, provided the surface is not a plane. In this paper we study the weak-coupling asymptotics of these bound states, i.e., the situation when the surface is a mildly curved plane. Under suitable assumptions about regularity and decay of surface curvatures we derive the leading order in the ground-state eigenvalue expansion. The argument is based on Birman-Schwinger analysis of Schrodinger operators in a planar hard-wall layer.
引用
收藏
页码:5969 / 5985
页数:17
相关论文
共 50 条
  • [31] APPROXIMATE METHOD FOR CURVED SHEAR LAYERS
    SO, RMC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (10): : 1143 - 1143
  • [32] THERMODYNAMICS OF CURVED BOUNDARY-LAYERS
    VIECELI, JJ
    REISS, H
    JOURNAL OF CHEMICAL PHYSICS, 1972, 57 (09): : 3745 - &
  • [33] THERMODYNAMICS OF CURVED BOUNDARY-LAYERS
    MANDELL, MJ
    REISS, H
    JOURNAL OF STATISTICAL PHYSICS, 1975, 13 (02) : 107 - 112
  • [34] MOMENTUM INTEGRAL FOR CURVED SHEAR LAYERS
    SO, RMC
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1975, 97 (02): : 253 - 256
  • [35] Love Type SurfaceWaves in Curved Layers
    Patnaik, Aditya Kumar
    Samal, Sapan Kumar
    Ghorai, Anjana P.
    RECENT TRENDS IN WAVE MECHANICS AND VIBRATIONS, WMVC 2018, 2020, : 97 - 105
  • [36] COMPRESSIBLE EKMAN LAYERS ON CURVED BOUNDARIES
    GREENSPAN, HP
    STUDIES IN APPLIED MATHEMATICS, 1984, 70 (02) : 141 - 149
  • [37] Nodal sets of thin curved layers
    Krejcirik, David
    Tusek, Matej
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (02) : 281 - 301
  • [38] ΔΔ and ΔΔΔ bound states
    Valcarce, A
    Garcilazo, H
    Mota, RD
    Fernández, F
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2001, 27 (01) : L1 - L7
  • [39] Fluidity of bound hydration layers
    Raviv, U
    Klein, J
    SCIENCE, 2002, 297 (5586) : 1540 - 1543
  • [40] Large-eddy simulation of a mildly curved open-channel flow
    Van Balen, W.
    Uijttewaal, W. S. J.
    Blanckaert, K.
    JOURNAL OF FLUID MECHANICS, 2009, 630 : 413 - 442