On the spectral stability of functional-differential equations

被引:6
作者
Rossovskii, L. E. [1 ]
机构
[1] Russian Peoples Friendship Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
elliptic functional-differential equation; boundary value problem; contraction and dilatation; star-shaped domain; internal perturbation of a domain; Sobolev space; sesquilinear form; Hilbert-Schmidt theorem; Riesz theorem; Hermitian form; Banach algebra; OPERATORS;
D O I
10.1134/S0001434611110265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A boundary value problem for an elliptic functional-differential equation with contraction and dilatation of the arguments of the desired function in the leading part is considered in a starshaped bounded domain. Estimates for the modification of eigenvalues of the operator of the problem under internal deformations of the domain are obtained.
引用
收藏
页码:867 / 881
页数:15
相关论文
共 50 条
[31]   On a boundary-value problem for a functional-differential hyperbolic equation of the third order [J].
Utkina E.A. .
Russian Mathematics, 2016, 60 (8) :60-63
[32]   On a Class of Functional Differential Equations with Symmetries [J].
Dilna, Nataliya ;
Feckan, Michal ;
Ronto, Andras .
SYMMETRY-BASEL, 2019, 11 (12)
[33]   Elliptic Functional Differential Equations with Degenerations [J].
V. A. Popov .
Lobachevskii Journal of Mathematics, 2020, 41 :869-894
[34]   Spectral Properties of Nonhomogenous Differential Equations with Spectral Parameter in the Boundary Condition [J].
Karaman, Ozkan .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (02) :109-119
[35]   Comparison results for functional differential equations with impulses [J].
Xiao, Li .
MATHEMATICA SLOVACA, 2013, 63 (01) :111-122
[36]   Functional Differential Equations With Delay and Random Effects [J].
Benaissa, Amel ;
Benchohra, Mouffak ;
Graef, John R. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2015, 33 (06) :1083-1091
[37]   FRACTIONAL ITERATIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES [J].
Wang, Jinrong ;
Deng, Jiahua ;
Wei, Wei .
FIXED POINT THEORY, 2016, 17 (01) :189-200
[38]   Existence of positive solutions for functional differential equations [J].
Hong, CH ;
Yeh, CC ;
Lee, CF ;
Wong, FH .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (6-7) :783-792
[39]   Boundary value problems for functional differential equations [J].
Xu, HK ;
Liz, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (7-8) :971-988
[40]   On the Cauchy problem for singular functional differential equations [J].
Bravyi, E. I. ;
Plaksina, I. M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,