MULTIPLE ERGODIC AVERAGES IN ABELIAN GROUPS AND KHINTCHINE TYPE RECURRENCE

被引:7
作者
Shalom, Or [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-91904 Jerusalem, Israel
基金
欧洲研究理事会;
关键词
POLYNOMIAL-SEQUENCES; THEOREM; CONVERGENCE;
D O I
10.1090/tran/8558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a countable abelian group. We study ergodic averages associated with configurations of the form {ag, bg, (a + b)g} for some a, b is an element of Z. Under some assumptions on G, we prove that the universal characteristic factor for these averages is a factor (Definition 1.15) of a 2-step nilpotent homogeneous space (Theorem 1.18). As an application we derive a Khintchine type recurrence result (Theorem 1.3). In particular, we prove that for every countable abelian group G, if a, b is an element of Z are such that aG, bG, (b - a)G and (a + b)G are of finite index in G, then for every E subset of G and epsilon > 0 the set {g is an element of G : d(E boolean AND E - ag boolean AND E - bg boolean AND E - (a + b)g) >= d(E)(4) - epsilon} is syndetic. This generalizes previous results for G = Z, G = F-p(omega) and G = circle plus(p is an element of P) F-p by Bergelson, Host and Kra [Invent. Math. 160 (2005), pp. 261- 303], Bergelson, Tao and Ziegler [J. Anal. Math. 127 (2015), pp. 329-378], and the author [Host-Kra theory for circle plus(p is an element of P) F-p-systems and multiple recurrence, arXiv:2101.04613.], respectively.
引用
收藏
页码:2729 / 2761
页数:33
相关论文
共 36 条
[1]  
Ackelsberg E., ARXIV210102811V2
[2]  
Auslander L., 1963, ANN MATH STUDIES, V53
[3]  
Becker H., 1996, LONDON MATH SOC LECT, V232
[4]   WEAKLY MIXING PET [J].
BERGELSON, V .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :337-349
[5]   Multiple recurrence and nilsequences [J].
Bergelson, V ;
Host, B ;
Kra, B ;
Ruzsa, I .
INVENTIONES MATHEMATICAE, 2005, 160 (02) :261-303
[6]   AN ERGODIC CORRESPONDENCE PRINCIPLE, INVARIANT MEANS AND APPLICATIONS [J].
Bergelson, Vitaly ;
Moragues, Andreu Ferre .
ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (02) :921-962
[7]  
Bergelson V, 2015, J ANAL MATH, V127, P329, DOI 10.1007/s11854-015-0033-1
[8]  
Bergelson V, 2010, GEOM FUNCT ANAL, V19, P1539, DOI 10.1007/s00039-010-0051-1
[9]  
Conze Jean-Pierre., 1988, Probabilites, V1987, P1
[10]  
CONZE JP, 1984, B SOC MATH FR, V112, P143