A cohomological description of property (T) for quantum groups

被引:19
作者
Kyed, David [1 ]
机构
[1] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
关键词
Property (T); Quantum groups; L-2-Betti numbers; CO-AMENABILITY; REPRESENTATIONS; 1-COHOMOLOGY; ALGEBRA;
D O I
10.1016/j.jfa.2011.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Delorme-Guichardet type theorem for discrete quantum groups expressing property (T) of the quantum group in question in terms of its first cohomology groups. As an application, we show that the first L-2-Betti number of a discrete property (T) quantum group vanishes. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1469 / 1493
页数:25
相关论文
共 41 条
[1]   UNBOUNDED NEGATIVE DEFINITE FUNCTIONS [J].
AKEMANN, CA ;
WALTER, ME .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (04) :862-871
[2]  
[Anonymous], 2002, ERGEB MATH GRENZGEB
[3]  
[Anonymous], 1997, TEXTS MONOGR PHYS
[4]  
Banica T, 1999, J REINE ANGEW MATH, V509, P167
[5]   On amenability and co-amenability of algebraic quantum groups and their corepresentations [J].
Bédos, E ;
Conti, R ;
Tuset, L .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (01) :17-60
[6]  
Bédos E, 2001, J GEOM PHYS, V40, P130, DOI 10.1016/S0393-0440(01)00024-9
[7]  
Bekka B., 2008, NEW MATH MONOGR, V11
[8]   Property (T) for C*-algebras [J].
Bekka, Bachir .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :857-867
[9]   Group cohomology, harmonic functions and the first L-2-Betti number [J].
Bekka, MEB ;
Valette, A .
POTENTIAL ANALYSIS, 1997, 6 (04) :313-326
[10]   Homology of free quantum groups [J].
Collins, Benoit ;
Haertel, Johannes ;
Thom, Andreas .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) :271-276