Prostate cancer diagnosis using quantitative phase imaging and machine learning

被引:4
|
作者
Nguyen, Tan H. [1 ,2 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
来源
QUANTITATIVE PHASE IMAGING | 2015年 / 9336卷
关键词
automatic diagnosis; Quantitative Phase Imaging; texton analysis; prostate cancer; MICROSCOPY;
D O I
10.1117/12.2080321
中图分类号
TH742 [显微镜];
学科分类号
摘要
We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is reported on a dataset of more than 300 cores of various diagnosis results.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Identification of Plausible Candidates in Prostate Cancer Using Integrated Machine Learning Approaches
    Kour, Bhumandeep
    Shukla, Nidhi
    Bhargava, Harshita
    Sharma, Devendra
    Sharma, Amita
    Singh, Anjuvan
    Valadi, Jayaraman
    Sadasukhi, Trilok Chand
    Vuree, Sugunakar
    Suravajhala, Prashanth
    CURRENT GENOMICS, 2023, 24 (05) : 287 - 306
  • [32] Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI
    Bertelli, Elena
    Mercatelli, Laura
    Marzi, Chiara
    Pachetti, Eva
    Baccini, Michela
    Barucci, Andrea
    Colantonio, Sara
    Gherardini, Luca
    Lattavo, Lorenzo
    Pascali, Maria Antonietta
    Agostini, Simone
    Miele, Vittorio
    FRONTIERS IN ONCOLOGY, 2022, 11
  • [33] Radiomic and Genomic Machine Learning Method Performance for Prostate Cancer Diagnosis: Systematic Literature Review
    Castaldo, Rossana
    Cavaliere, Carlo
    Soricelli, Andrea
    Salvatore, Marco
    Pecchia, Leandro
    Franzese, Monica
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (04)
  • [34] A Polarization-Imaging-Based Machine Learning Framework for Quantitative Pathological Diagnosis of Cervical Precancerous Lesions
    Dong, Yang
    Wan, Jiachen
    Wang, Xingjian
    Xue, Jing-Hao
    Zou, Jibin
    He, Honghui
    Li, Pengcheng
    Hou, Anli
    Ma, Hui
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) : 3728 - 3738
  • [35] Quantitative Phase Imaging Using Deep Learning-Based Holographic Microscope
    Di, Jianglei
    Wu, Ji
    Wang, Kaiqiang
    Tang, Ju
    Li, Ying
    Zhao, Jianlin
    FRONTIERS IN PHYSICS, 2021, 9
  • [36] Rapid quantitative phase imaging using deep learning for phase object with refractive index variation
    Xu, Xiaoqing
    Xie, Ming
    Ji, Ying
    Wang, Yawei
    JOURNAL OF MODERN OPTICS, 2021, 68 (06) : 327 - 338
  • [37] Hyperspectral imaging and quantitative analysis for prostate cancer detection
    Akbari, Hamed
    Halig, Luma V.
    Schuster, David M.
    Osunkoya, Adeboye
    Master, Viraj
    Nieh, Peter T.
    Chen, Georgia Z.
    Fei, Baowei
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (07)
  • [38] Machine learning: applications of artificial intelligence to imaging and diagnosis
    Nichols J.A.
    Herbert Chan H.W.
    Baker M.A.B.
    Biophysical Reviews, 2019, 11 (1) : 111 - 118
  • [39] Enhancing bone metastasis prediction in prostate cancer using quantitative mpMRI features, ISUP grade and PSA density: a machine learning approach
    Gundogdu, Hasan
    Panc, Kemal
    Sekmen, Sumeyye
    Er, Huseyin
    Gurun, Enes
    ABDOMINAL RADIOLOGY, 2024, : 2221 - 2231
  • [40] Is There an Added Value of Quantitative DCE-MRI by Magnetic Resonance Dispersion Imaging for Prostate Cancer Diagnosis?
    Jager, Auke
    Oddens, Jorg R.
    Postema, Arnoud W.
    Miclea, Razvan L.
    Schoots, Ivo G.
    Nooijen, Peet G. T. A.
    van der Linden, Hans
    Barentsz, Jelle O.
    Heijmink, Stijn W. T. P. J.
    Wijkstra, Hessel
    Mischi, Massimo
    Turco, Simona
    CANCERS, 2024, 16 (13)