Prostate cancer diagnosis using quantitative phase imaging and machine learning

被引:4
|
作者
Nguyen, Tan H. [1 ,2 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
来源
QUANTITATIVE PHASE IMAGING | 2015年 / 9336卷
关键词
automatic diagnosis; Quantitative Phase Imaging; texton analysis; prostate cancer; MICROSCOPY;
D O I
10.1117/12.2080321
中图分类号
TH742 [显微镜];
学科分类号
摘要
We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is reported on a dataset of more than 300 cores of various diagnosis results.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Machine learning-based screening of red blood cells using quantitative phase imaging with micro-spectrocolorimetry
    Singh, Veena
    Srivastava, Vishal
    Mehta, Dalip S.
    OPTICS AND LASER TECHNOLOGY, 2020, 124
  • [22] Diagnosis of Prostate Cancer with Support Vector Machine Using Multiwavelength Photoacoustic Images
    Borkar, Aniket
    Sinha, Saugata
    Dhengre, Nikhil
    Chinni, Bhargava
    Dogra, Vikram
    Rao, Navalgund
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2018, VOL 1, 2020, 1022 : 247 - 254
  • [23] Photoacoustic imaging in prostate cancer: A new paradigm for diagnosis and management
    Tajaldeen, Abdulrahman
    Alrashidi, Muteb
    Alsaadi, Mohamed J.
    Alghamdi, Salem Saeed
    Alshammari, Hamed
    Alsleem, Haney
    Jafer, Mustafa
    Aljondi, Rowa
    Alqahtani, Saeed
    Alotaibi, Awatif
    Alzandi, Abdulrahman M.
    Alahmari, Abdullah Mubarak
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2024, 47
  • [24] Prostate cancer tissue classification by multiphoton imaging, automated image analysis and machine learning
    Gomes, Egleidson F. A.
    Paulino Junior, Eduardo
    de Lima, Mario F. R.
    Reis, Luana A.
    Paranhos, Giovanna
    Mamede, Marcelo
    Longford, Francis G. J.
    Frey, Jeremy G.
    de Paula, Ana Maria
    JOURNAL OF BIOPHOTONICS, 2023, 16 (06)
  • [25] Computer-aided diagnosis for prostate cancer using support vector machine
    Mohamed, SS
    Salama, MMA
    Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display, Pts 1 and 2, 2005, 5744 : 898 - 906
  • [26] Nanotechnological strategies for prostate cancer imaging and diagnosis
    Wheeler, Thecla Trinity
    Cao, Pei
    Ghouri, Muhammad Daniyal
    Ji, Tianjiao
    Nie, Guangjun
    Zhao, Yuliang
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (08) : 1498 - 1514
  • [27] Nanotechnological strategies for prostate cancer imaging and diagnosis
    Thecla Trinity Wheeler
    Pei Cao
    Muhammad Daniyal Ghouri
    Tianjiao Ji
    Guangjun Nie
    Yuliang Zhao
    Science China Chemistry, 2022, 65 : 1498 - 1514
  • [28] The role of imaging in the diagnosis of primary prostate cancer
    Harvey, Hugh
    deSouza, Nandita M.
    JOURNAL OF CLINICAL UROLOGY, 2016, 9 (02) : 11 - 17
  • [29] Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis
    Wu, Mark
    Krishna, Satheesh
    Thornhill, Rebecca E.
    Flood, Trevor A.
    McInnes, Matthew D. F.
    Schieda, Nicola
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (03) : 940 - 950
  • [30] Comparative Analysis of Breast and Prostate Cancer Prediction Using Machine Learning Techniques
    Rani, Samta
    Ahmad, Tanvir
    Masood, Sarfaraz
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1, 2023, 473 : 643 - 650