Prostate cancer diagnosis using quantitative phase imaging and machine learning

被引:4
|
作者
Nguyen, Tan H. [1 ,2 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
来源
QUANTITATIVE PHASE IMAGING | 2015年 / 9336卷
关键词
automatic diagnosis; Quantitative Phase Imaging; texton analysis; prostate cancer; MICROSCOPY;
D O I
10.1117/12.2080321
中图分类号
TH742 [显微镜];
学科分类号
摘要
We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is reported on a dataset of more than 300 cores of various diagnosis results.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] QPI for Prostate Cancer Diagnosis: Quantitative Separation of Gleason Grades 3 and 4
    Sridharan, Shamira
    Macias, Virgilia
    Tangella, Krishnarao
    Kajdacsy-Balla, Andre
    Popescu, Gabriel
    QUANTITATIVE PHASE IMAGING, 2015, 9336
  • [12] Prediction System for Prostate Cancer Recurrence Using Machine Learning
    Lee, Sun Jung
    Yu, Sung Hye
    Kim, Yejin
    Kim, Jae Kwon
    Hong, Jun Hyuk
    Kim, Choung-Soo
    Seo, Seong Il
    Byun, Seok-Soo
    Jeong, Chang Wook
    Lee, Ji Youl
    Choi, In Young
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [13] Prostate Cancer Detection and Analysis using Advanced Machine Learning
    Alzboon, Mowafaq Salem
    Al-Batah, Mohammad Subhi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 388 - 396
  • [14] Prediction of Prostate Cancer using Ensemble of Machine Learning Techniques
    Oyewo, O. A.
    Boyinbode, O. K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (03) : 149 - 154
  • [15] Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging
    Majeed, Hassaan
    Okoro, Chukwuemeka
    Kajdacsy-Balla, Andre
    Toussaint, Kimani C., Jr.
    Popescu, Gabriel
    JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (04)
  • [16] Non invasive live cell cycle monitoring using quantitative phase imaging and proximal machine learning methods
    Pognonec, Philippe
    Barlaud, Michel
    Wattellier, Benoit
    Pourcher, Thierry
    Zhou, Yuxiang
    Aknoun, Sherazade
    Yonnet, Manuel
    Antonini, Marc
    2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 483 - 488
  • [17] Machine Learning Predicts Outcomes of Phase III Clinical Trials for Prostate Cancer
    Beacher, Felix D.
    Mujica-Parodi, Lilianne R.
    Gupta, Shreyash
    Ancora, Leonardo A.
    ALGORITHMS, 2021, 14 (05)
  • [18] Age-specific survival in prostate cancer using machine learning
    Doja, M. N.
    Kaur, Ishleen
    Ahmad, Tanvir
    DATA TECHNOLOGIES AND APPLICATIONS, 2020, 54 (02) : 215 - 234
  • [19] Predicting intermediate-risk prostate cancer using machine learning
    Stojadinovic, Miroslav
    Stojadinovic, Milorad
    Jankovic, Slobodan
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2025, : 1737 - 1746
  • [20] Research related to the diagnosis of prostate cancer based on machine learning medical images: A review
    Chen, Xinyi
    Liu, Xiang
    Wu, Yuke
    Wang, Zhenglei
    Wang, Shuo Hong
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 181