Video-Based Automated Assessment of Movement Parameters Consistent with MDS-UPDRS III in Parkinson's Disease

被引:19
作者
Vignoud, Gaetan [1 ,2 ]
Desjardins, Clement [3 ]
Salardaine, Quentin [3 ]
Mongin, Marie [3 ]
Garcin, Beatrice [3 ]
Venance, Laurent [1 ]
Degos, Bertrand [1 ,3 ]
机构
[1] Univ PSL, Coll France, Ctr Interdisciplinary Res Biol CIRB, INSERM,CNRS, Paris, France
[2] INRIA Paris, MAMBA Modelling & Anal Med & Biol Applicat, Paris, France
[3] Hop Univ Paris Seine St Denis HUPSSD, Hop Avicenne, AP HP, Dept Neurol,Sorbonne Paris Nord,NS PK FCRIN Netwo, Bobigny, France
关键词
Bradykinesia; deep learning; Parkinson's disease; MDS-UPDRS III;
D O I
10.3233/JPD-223445
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Among motor symptoms of Parkinson's disease (PD), including rigidity and resting tremor, bradykinesia is a mandatory feature to define the parkinsonian syndrome. MDS-UPDRS III is the worldwide reference scale to evaluate the parkinsonian motor impairment, especially bradykinesia. However, MDS-UPDRS III is an agent-based score making reproducible measurements and follow-up challenging. Objective: Using a deep learning approach, we developed a tool to compute an objective score of bradykinesia based on the guidelines of the gold-standard MDS-UPDRS III. Methods: We adapted and applied two deep learning algorithms to detect a two-dimensional (2D) skeleton of the hand composed of 21 predefined points, and transposed it into a three-dimensional (3D) skeleton for a large database of videos of parkinsonian patients performing MDS-UPDRS III protocols acquired in the Movement Disorder unit ofAvicenne University Hospital. Results: We developed a 2D and 3D automated analysis tool to study the evolution of several key parameters during the protocol repetitions of the MDS-UPDRS III. Scores from 2D automated analysis showed a significant correlation with gold-standard ratings of MDS-UPDRS III, measured with coefficients of determination for the tapping (0.609) and hand movements (0.701) protocols using decision tree algorithms. The individual correlations of the different parameters measured with MDS-UPDRS III scores carry meaningful information and are consistent with MDS-UPDRS III guidelines. Conclusion: We developed a deep learning-based tool to precisely analyze movement parameters allowing to reliably score bradykinesia for parkinsonian patients in a MDS-UPDRS manner.
引用
收藏
页码:2211 / 2222
页数:12
相关论文
共 38 条
  • [1] Potential reliability and validity of a modified version of the Unified Parkinson's Disease Rating Scale that could be administered remotely
    Abdolahi, Amir
    Scoglio, Nicholas
    Killoran, Annie
    Dorsey, E. Ray
    Biglan, Kevin M.
    [J]. PARKINSONISM & RELATED DISORDERS, 2013, 19 (02) : 218 - 221
  • [2] Developing and assessing a new web-based tapping test for measuring distal movement in Parkinson's disease: a Distal Finger Tapping test
    Akram, Noreen
    Li, Haoxuan
    Ben-Joseph, Aaron
    Budu, Caroline
    Gallagher, David A.
    Bestwick, Jonathan P.
    Schrag, Anette
    Noyce, Alastair J.
    Simonet, Cristina
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Wearables in the home-based assessment of abnormal movements in Parkinson's disease: a systematic review of the literature
    Ancona, Stefania
    Faraci, Francesca D.
    Khatab, Elina
    Fiorillo, Luigi
    Gnarra, Oriella
    Nef, Tobias
    Bassetti, Claudio L. A.
    Bargiotas, Panagiotis
    [J]. JOURNAL OF NEUROLOGY, 2022, 269 (01) : 100 - 110
  • [4] Movement disorder society criteria for clinically established early Parkinson's disease
    Berg, Daniela
    Adler, Charles H.
    Bloem, Bastiaan R.
    Chan, Piu
    Gasser, Thomas
    Goetz, Christopher G.
    Halliday, Glenda
    Lang, Anthony E.
    Lewis, Simon
    Li, Yuan
    Liepelt-Scarfone, Inga
    Litvan, Irene
    Marek, Kenneth
    Maetzler, Corina
    Mi, Taomian
    Obeso, Jose
    Oertel, Wolfgang
    Olanow, C. Warren
    Poewe, Werner
    Rios-Romenets, Silvia
    Schaeffer, Eva
    Seppi, Klaus
    Heim, Beatrice
    Slow, Elizabeth
    Stern, Matthew
    Bledsoe, Ian O.
    Deuschl, Guenther
    Postuma, Ronald B.
    [J]. MOVEMENT DISORDERS, 2018, 33 (10) : 1643 - 1646
  • [5] Stress-evoking emotional stimuli exaggerate deficits in motor function in Parkinson's disease
    Blakemore, R. L.
    MacAskill, M. R.
    Shoorangiz, R.
    Anderson, T. J.
    [J]. NEUROPSYCHOLOGIA, 2018, 112 : 66 - 76
  • [6] Evolving concepts on bradykinesia
    Bologna, Matteo
    Paparella, Giulia
    Fasano, Alfonso
    Hallett, Mark
    Berardelli, Alfredo
    [J]. BRAIN, 2020, 143 : 727 - 750
  • [7] Doosti B, 2019, Arxiv, DOI arXiv:1903.01013
  • [8] Measuring Parkinson's disease over time: The real-world within-subject reliability of the MDS-UPDRS
    Evers, Luc J. W.
    Krijthe, Jesse H.
    Meinders, Marjan J.
    Bloem, Bastiaan R.
    Heskes, Tom M.
    [J]. MOVEMENT DISORDERS, 2019, 34 (10) : 1480 - 1487
  • [9] Ge LH, 2019, Arxiv, DOI [arXiv:1903.00812, 10.48550/arXiv.1903.00812, DOI 10.48550/ARXIV.1903.00812]
  • [10] Second consensus statement on the diagnosis of multiple system atrophy
    Gilman, S.
    Wenning, G. K.
    Low, P. A.
    Brooks, D. J.
    Mathias, C. J.
    Trojanowski, J. Q.
    Wood, N. W.
    Colosimo, C.
    Duerr, A.
    Fowler, C. J.
    Kaufmann, H.
    Klockgether, T.
    Lees, A.
    Poewe, W.
    Quinn, N.
    Revesz, T.
    Robertson, D.
    Sandroni, P.
    Seppi, K.
    Vidailhet, M.
    [J]. NEUROLOGY, 2008, 71 (09) : 670 - 676