A Gleason-Kahane-Zelazko theorem for reproducing kernel Hilbert spaces

被引:2
|
作者
Chu, Cheng [1 ]
Hartz, Michael [2 ]
Mashreghi, Javad [1 ]
Ransford, Thomas [1 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
[2] Univ Saarland, Fachrichtung Math, Saarbrucken, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
PICK; FACTORIZATION; REFLEXIVITY;
D O I
10.1112/blms.12618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the following Hilbert-space analog of the Gleason-Kahane-Zelazko theorem. If H${\mathcal {H}}$ is a reproducing kernel Hilbert space with a normalized complete Pick kernel, and if ?$\Lambda$ is a linear functional on H${\mathcal {H}}$ such that ?(1)=1$\Lambda (1)=1$ and ?(f)not equal 0$\Lambda (f)\ne 0$ for all cyclic functions f is an element of H$f\in {\mathcal {H}}$, then ?$\Lambda$ is multiplicative, in the sense that ?(fg)=?(f)?(g)$\Lambda (fg)=\Lambda (f)\Lambda (g)$ for all f,g is an element of H$f,g\in {\mathcal {H}}$ such that fg is an element of H$fg\in {\mathcal {H}}$. Moreover ?$\Lambda$ is automatically continuous. We give examples to show that the theorem fails if the hypothesis of a complete Pick kernel is omitted. We also discuss conditions under which ?$\Lambda$ has to be a point evaluation.
引用
收藏
页码:1120 / 1130
页数:11
相关论文
共 50 条