Energy-conserving contact interaction models for arbitrarily shaped discrete elements

被引:114
作者
Feng, Y. T. [1 ]
Han, K. [1 ]
Owen, D. R. J. [1 ]
机构
[1] Swansea Univ, Coll Engn, Civil & Computat Engn Ctr, Swansea SA2 8PP, W Glam, Wales
关键词
Discrete element; Normal contact model; Energy conservation; Arbitrarily shaped bodies;
D O I
10.1016/j.cma.2011.02.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work aims to establish a unified theoretical framework for normal contact of arbitrarily shaped discrete elements in discrete element modelling solely based on the energy-conservation principle for elastic contact. It will show that the normal force must be a potential field vector associated with a potential. With the construction of an appropriate potential function, a complete normal contact model, including the magnitude and direction of the normal force and the normal contact line, can be unambiguously derived for a pair of any shaped bodies. The model in its final form is simple and has a clear geometric perspective for 2D bodies. It can also recover some well-known models for bodies with simple geometric shapes. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 177
页数:9
相关论文
共 12 条
[2]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[3]   On upscaling of discrete element models: similarity principles [J].
Feng, Y. T. ;
Han, K. ;
Owen, D. R. J. ;
Loughran, J. .
ENGINEERING COMPUTATIONS, 2009, 26 (06) :599-609
[4]  
Feng Y.T., 2005, P 3 MIT C COMP FLUID, P210
[5]   A 2D polygon/polygon contact model: algorithmic aspects [J].
Feng, YT ;
Owen, DRJ .
ENGINEERING COMPUTATIONS, 2004, 21 (2-4) :265-277
[6]  
Johnson K. L., 1987, CONTACT MECH
[7]   Finite element analysis of nonsmooth contact [J].
Kane, C ;
Repetto, EA ;
Ortiz, M ;
Marsden, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 180 (1-2) :1-26
[8]  
Marsden J., 1985, Calculus, V3
[9]  
Munjiza A., 2004, The combined finite-discrete element method, DOI DOI 10.1002/0470020180
[10]  
Preparata F. P., 1985, Computational geometry: An introduction, DOI DOI 10.1007/978-1-4612-1098-6