Directing Substrate Morphology via Self-Assembly: Ligand-Mediated Scission of Gallium-Indium Microspheres to the Nanoscale

被引:277
作者
Hohman, J. Nathan [1 ,2 ,3 ]
Kim, Moonhee [1 ,2 ]
Wadsworth, Garrett A. [1 ,2 ,4 ]
Bednar, Heidi R. [1 ,2 ]
Jiang, Jun [1 ,2 ,5 ]
LeThai, Mya A. [1 ,2 ]
Weiss, Paul S. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[4] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[5] Dickinson Coll, Dept Chem, Carlisle, PA 17013 USA
基金
美国国家科学基金会;
关键词
Gallium; indium; alloy; liquid metal; self-assembled monolayer; nanoparticle; alkanethiol; ultrasound; sonication; hydrogen bonding; BARE SEMICONDUCTOR SURFACES; MONOLAYERS; NANOPARTICLES; CHEMISTRY; AU(111); SHELL; CORE; NANOCRYSTALS; DISULFIDES; SIMULATION;
D O I
10.1021/nl202728j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have developed a facile method for the construction of liquid-phase eutectic gallium-indium (EGaIn) alloy nanoparticles. Particle formation is directed by molecular self-assembly and assisted by sonication. As the bulk liquid alloy is ultrasonically dispersed, fast thiolate self-assembly at the EGaIn interface protects the material against oxidation. The choice of self-assembled monolayer ligand directs the ultimate size reduction in the material; strongly interacting molecules induce surface strain and assist particle cleavage to the nanoscale. Transmission electron microscopy images and diffraction analyses reveal that the nanoscale particles are in an amorphous or liquid phase, with no observed faceting. The particles exhibit strong absorption in the ultraviolet (similar to 200 nm), consistent with the gallium surface plasmon resonance, but dependent on the nature of the particle ligand shell.
引用
收藏
页码:5104 / 5110
页数:7
相关论文
共 72 条
  • [1] Applications of Ultrasound to the Synthesis of Nanostructured Materials
    Bang, Jin Ho
    Suslick, Kenneth S.
    [J]. ADVANCED MATERIALS, 2010, 22 (10) : 1039 - 1059
  • [2] Phase-field simulation of solidification
    Boettinger, WJ
    Warren, JA
    Beckermann, C
    Karma, A
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 : 163 - 194
  • [3] Controlling the Properties of Self-Assembled Monolayers by Substrate Curvature
    Browne, Kevin P.
    Grzybowski, Bartosz A.
    [J]. LANGMUIR, 2011, 27 (04) : 1246 - 1250
  • [4] EFFECT OF ULTRASOUND ON CHEMICAL REACTION RATE
    CHEN, JW
    KALBACK, WM
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1967, 6 (02): : 175 - &
  • [5] Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid
    Chen, Wei
    Kim, Jaemin
    Sun, Shouheng
    Chen, Shaowei
    [J]. LANGMUIR, 2007, 23 (22) : 11303 - 11310
  • [6] Soft-chemistry based fabrication of gallium nitride nanoparticles
    Chen, Yi
    Maniruzzaman, Mohammad
    Kim, Jaehwan
    [J]. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2011, 12 (03) : 573 - 576
  • [7] Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers
    Chiechi, Ryan C.
    Weiss, Emily A.
    Dickey, Michael D.
    Whitesides, George M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (01) : 142 - 144
  • [8] Cingarapu S., 2011, J. Inorg. Chem, V50, P5000
  • [9] Cluster-Assembled Materials
    Claridge, Shelley A.
    Castleman, A. W., Jr.
    Khanna, Shiv N.
    Murray, Christopher B.
    Sen, Ayusman
    Weiss, Paul S.
    [J]. ACS NANO, 2009, 3 (02) : 244 - 255
  • [10] Control of monolayer assembly structure by hydrogen bonding rather than by adsorbate-substrate templating
    Clegg, RS
    Hutchison, JE
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (22) : 5319 - 5327