Localization in one- and two-dimensional quantum Coulomb glasses

被引:9
作者
Jeon, GS [1 ]
Wu, S
Lee, HW
Choi, MY
机构
[1] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea
[2] Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea
来源
PHYSICAL REVIEW B | 1999年 / 59卷 / 04期
关键词
D O I
10.1103/PhysRevB.59.3033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study properties of the one- and two-dimensional quantum Coulomb glasses, with particular attention to the effects of the electron-electron interaction on the localization. The Hartree-Fock calculation reveals that the interaction reduces the single-particle density of states and enhances the localization near the: Fermi energy. It is also found that the energy range, in which the interaction enhances the localization, broadens with the increasing hopping strength. The validity of the Hartree-Fock approximation is checked via detailed comparison with the exact diagonalization results. In particular we introduce a generalized inverse participation number, which gives a good description of the localization in an interacting system. [S0163-1829(99)02404-2].
引用
收藏
页码:3033 / 3039
页数:7
相关论文
共 50 条
  • [21] Recombination in one- and two-dimensional fitness landscapes
    Avetisyan, Zh.
    Saakian, David B.
    [J]. PHYSICAL REVIEW E, 2010, 81 (05):
  • [22] A one- and two-dimensional nonlinear pulse interaction
    Ciattoni, A
    Degasperis, A
    DelRe, E
    [J]. PHYSICAL REVIEW E, 2000, 61 (05): : R4714 - R4717
  • [23] Emerging trends in one- and two-dimensional nanomaterials
    Tagmatarchis, Nikos
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2020, 7 (10):
  • [24] One- and two-dimensional spectral length measurement
    Pinkl, W
    Esslinger, M
    Fercher, AF
    [J]. LASERS IN OPHTHALMOLOGY IV, PROCEEDINGS OF, 1996, 2930 : 207 - 215
  • [25] Basic one- and two-dimensional NMR spectroscopy
    Friebolin, H.
    Cavanagh, J.
    [J]. Angewandte Chemie (International Edition in English), 1991, 30 (10):
  • [26] One- and two-dimensional ESEEM spectroscopy of flavoproteins
    Martinez, JI
    Alonso, PJ
    GomezMoreno, C
    Medina, M
    [J]. BIOCHEMISTRY, 1997, 36 (49) : 15526 - 15537
  • [27] Magnetic transitions in one- and two-dimensional nanostructures
    Suzdalev I.P.
    Maksimov Y.V.
    Kolchenko N.N.
    Novichikhin S.V.
    Imshennik V.K.
    Matveev V.V.
    Shub B.R.
    Eliseev A.A.
    Kharlamova M.A.
    Lukashin A.V.
    Tret'yakov Y.D.
    Smirnov V.M.
    Zemtsova E.A.
    Kirichenko S.O.
    [J]. Nanotechnologies in Russia, 2010, 5 (3-4): : 214 - 222
  • [28] Quantum magnetotransport in two-dimensional Coulomb liquids
    Monarkha, YP
    Teske, E
    Wyder, P
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 370 (01): : 1 - 61
  • [29] Dimensional evolution between one- and two-dimensional topological phases
    Guo, Huaiming
    Lin, Yang
    Shen, Shun-Qing
    [J]. PHYSICAL REVIEW B, 2014, 90 (08)
  • [30] Two-Dimensional Rational Automata: A Bridge Unifying One- and Two-Dimensional Language Theory
    Anselmo, Marcella
    Giammarresi, Dora
    Madonia, Maria
    [J]. SOFSEM 2013: Theory and Practice of Computer Science, 2013, 7741 : 133 - 145