Steady flow of generalized Newtonian fluid with multivalued rheology and nonmonotone friction law

被引:11
作者
Dudek, Sylwia [1 ]
Kalita, Piotr [2 ]
Migorski, Stanislaw [3 ]
机构
[1] Krakow Univ Technol, Fac Phys Math & Comp Sci, Inst Math, Ul Warszawska 24, PL-31155 Krakow, Poland
[2] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Lodz Univ Technol, Inst Math, Ul Wolczanska 215, PL-90924 Lodz, Poland
关键词
Generalized Newtonian fluid; Multivalued constitutive law; Maximal monotone; Clarke generalized gradient; Frictional contact; INCOMPRESSIBLE FLUIDS; BOUNDARY-CONDITIONS; STOKES FLOWS;
D O I
10.1016/j.camwa.2017.06.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stationary incompressible flow of a generalized Newtonian fluid described by a nonlinear multivalued maximal monotone constitutive law and a multivalued nonmonotone frictional boundary condition. We provide results on the existence and uniqueness of a solution to the variational form of the problem. When the multivalued laws are of a subdifferential form, we prove the existence of a solution to a variational-hemivariational inequality for the flow's velocity field. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1813 / 1825
页数:13
相关论文
共 28 条
[1]   A mathematical model to describe the change in the constitutive character of blood due to platelet activation [J].
Anand, M ;
Rajagopal, KR .
COMPTES RENDUS MECANIQUE, 2002, 330 (08) :557-562
[2]  
[Anonymous], 2003, PORT MATH
[3]  
[Anonymous], 2003, INTRO NONLINEAR ANAL, DOI DOI 10.1007/978-1-4419-9158-4
[4]   ON GLOBAL IN TIME DYNAMICS OF APLANAR BINGHAM FLOW SUBJECT TO A SUBDIFFERENTIAL BOUNDARY CONDITION [J].
Boukrouche, Mahdi ;
Lukaszewicz, Grzegorz .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (10) :3969-3983
[5]   ON UNSTEADY FLOWS OF IMPLICITLY CONSTITUTED INCOMPRESSIBLE FLUIDS [J].
Bulicek, Miroslav ;
Gwiazda, Piotr ;
Malek, Josef ;
Swierczewska-Gwiazda, Agnieszka .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) :2756-2801
[6]   On steady flows of incompressible fluids with implicit power-law-like rheology [J].
Bulicek, Miroslav ;
Gwiazda, Piotr ;
Malek, Josef ;
Swierczewska-Gwiazda, Agnieszka .
ADVANCES IN CALCULUS OF VARIATIONS, 2009, 2 (02) :109-136
[7]  
Castaing C., 1977, CONVEX ANAL MEASURAB, V580, DOI DOI 10.1007/BFB0087686
[8]   G-CONVERGENCE OF MONOTONE-OPERATORS [J].
CHIADOPIAT, V ;
DALMASO, G ;
DEFRANCESCHI, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (03) :123-160
[9]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[10]  
Dudek S., 2017, APPL ANAL IN PRESS