Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation

被引:246
作者
Tuia, Devis [1 ]
Verrelst, Jochem [1 ]
Alonso, Luis [1 ]
Perez-Cruz, Fernando [2 ]
Camps-Valls, Gustavo [1 ]
机构
[1] Univ Valencia, Image Proc Lab, E-46003 Valencia, Spain
[2] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid 28911, Spain
基金
瑞士国家科学基金会;
关键词
Biophysical parameter estimation; model inversion; regression; support vector regression (SVR); VEGETATION INDEXES;
D O I
10.1109/LGRS.2011.2109934
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter proposes a multioutput support vector regression (M-SVR) method for the simultaneous estimation of different biophysical parameters from remote sensing images. General retrieval problems require multioutput (and potentially nonlinear) regression methods. M-SVR extends the single-output SVR to multiple outputs maintaining the advantages of a sparse and compact solution by using an e-insensitive cost function. The proposed M-SVR is evaluated in the estimation of chlorophyll content, leaf area index and fractional vegetation cover from a hyperspectral compact high-resolution imaging spectrometer images. The achieved improvement with respect to the single-output regression approach suggests that M-SVR can be considered a convenient alternative for nonparametric biophysical parameter estimation and model inversion.
引用
收藏
页码:804 / 808
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 1999, SPRINGER SCI
[2]   Robust support vector regression for biophysical variable estimation from remotely sensed images [J].
Camps-Valls, Gustavo ;
Bruzzone, Lorenzo ;
Rojo-Alvarez, Jose L. ;
Melgani, Farid .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (03) :339-343
[3]   Remote Sensing Feature Selection by Kernel Dependence Measures [J].
Camps-Valls, Gustavo ;
Mooij, Joris ;
Schoelkopf, Bernhard .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (03) :587-591
[4]   Biophysical Parameter Estimation With a Semisupervised Support Vector Machine [J].
Camps-Valls, Gustavo ;
Munoz-Mari, Jordi ;
Gomez-Chova, Luis ;
Richter, Katja ;
Calpe-Maravilla, Javier .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) :248-252
[5]  
De Martino M., 2002, Proceedings of the International Workshop on Geo-Spatial Knowledge Processing for Natural Resource Management, P54
[6]   Development and application of a neural network based ocean colour algorithm in coastal waters [J].
Dzwonkowski, B ;
Yan, XH .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (06) :1175-1200
[7]  
GOODENOUGH DG, 2001, P IGARSS, V2, P764
[8]  
Gretton A, 2005, LECT NOTES ARTIF INT, V3734, P63
[9]   Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture [J].
Haboudane, D ;
Miller, JR ;
Pattey, E ;
Zarco-Tejada, PJ ;
Strachan, IB .
REMOTE SENSING OF ENVIRONMENT, 2004, 90 (03) :337-352
[10]   Review of methods for in situ leaf area index determination - Part I. Theories, sensors and hemispherical photography [J].
Jonckheere, I ;
Fleck, S ;
Nackaerts, K ;
Muys, B ;
Coppin, P ;
Weiss, M ;
Baret, F .
AGRICULTURAL AND FOREST METEOROLOGY, 2004, 121 (1-2) :19-35